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Fig. 1. Our Motion Puzzle framework translates the motion of selected body parts in a source motion to a stylized output motion. It can also compose the
motion style from multiple target motions for different body parts like a puzzle to stylize the full-body output motion while preserving the content of the
source motion. From the left, this figure shows examples of transferring styles in the target motions for the spine and legs, spine and arms, arms only, and
whole body.

This paper presents Motion Puzzle, a novel motion style transfer network
that advances the state-of-the-art in several important respects. The Motion
Puzzle is the first that can control the motion style of individual body parts,
allowing for local style editing and significantly increasing the range of
stylized motions. Designed to keep the human’s kinematic structure, our
framework extracts style features from multiple style motions for different
body parts and transfers them locally to the target body parts. Another major
advantage is that it can transfer both global and local traits of motion style
by integrating the adaptive instance normalization and attention modules
while keeping the skeleton topology. Thus, it can capture styles exhibited by
dynamic movements, such as flapping and staggering, significantly better
than previous work. In addition, our framework allows for arbitrary motion
style transfer without datasets with style labeling or motion pairing, making
many publicly available motion datasets available for training. Our frame-
work can be easily integrated with motion generation frameworks to create
many applications, such as real-time motion transfer. We demonstrate the
advantages of our framework with a number of examples and comparisons
with previous work.
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1 INTRODUCTION
Style is an essential component in human movement as it reflects
various aspects of people, such as personality, emotion, and inten-
tion. Thus the expressibility of style is crucial for animating human
characters and avatars. However, obtaining stylized motions is a
challenging task: Since motion style is somewhat subtle and subjec-
tive, professional actors or animators are often necessary to capture
or edit motions, and evenwith themmany iterationsmay be required
because the same style can be expressed in numerous ways. Such
difficulties make producing high-quality stylized motions costly and
time-consuming.

An effective way of creating stylized motions is extracting a style
component from example motion data (called target motion) and
applying it to another motion (called source motion) containing
desired content, for which researchers have achieved remarkable
progress [Aberman et al. 2020b; Holden et al. 2016; Park et al. 2021;
Yumer and Mitra 2016]. Yet, previous methods still suffer from sev-
eral limitations.
First, they require style labeling or motion pairing in training

datasets for specific loss functions or computing the difference be-
tween motions, making it difficult to use many publicly available
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unlabeled motion datasets. Second, these methods only capture spa-
tially and temporally averaged global style features of the target
motion and do not capture local style features well. Thus, they are
limited in extracting time-varying styles, styles exhibited by dy-
namic movements (e.g., fluttering or instantaneous falling). Third,
they can only modify the whole-body motion while, in practical
scenarios, it is often needed to change the style of only some part of
the body. For example, they cannot add a collapsing style (tripping
motion) only to the spine and legs of a zombie walking to create a
collapsing style zombie walking. This operation is in analogy to the
segment style transfer that changes styles of only the nose, eyes, or
lips of the whole face in image transfer [Shen et al. 2020].

This paper presents a novel framework for motion style transfer
with important improvements on these limitations. A unique ad-
vantage of our framework is that it can control the motion style of
individual body parts (the arms, legs, and spine) while preserving
the content of a given source motion; hence we name it Motion
Puzzle. The ability to stylize motion by body part can dramatically
increase the range of expressible motions: Rather than simply trans-
ferring a single style to a whole body, by combining various style
components applied to different body parts, or by applying a new
style component to only a subset of body parts, it can synthesize
a wide variety of stylized motions. To the best of our knowledge,
our work is the first that achieves this per-body-part motion style
transfer.
Motion Puzzle framework consists of two encoders for extract-

ing multi-level style features for the individual body parts from
target motions and a content feature from a source motion, and one
decoder to synthesize a stylized whole-body motion. For per-body-
part style transfer, we develop a novel Body Part Style Network
(BP-StyleNet), which takes the human body part topology into ac-
count during the style injection process, and employ a skeleton
aware graph convolutional network to extract and process features
while preserving the structure of body parts.

Another major advantage of our framework is that it can transfer
both global and local traits of motion style via two-step transfer
modules: Body Part Adaptive Instance Normalization (BP-AdaIN)
and Body Part Attention Network (BP-ATN) inside BP-StyleNet. BP-
AdaINmodule injects global style features into the content feature by
applying AdaIN [Huang and Belongie 2017] by body part. BP-ATN
module transfers the locally semantic style features by constructing
an attention map between content feature and style feature by
body part. Especially, the time-varying motion style is captured via
ATN module. For example, given a motion style of flapping with
bent arms, our framework successfully extracts and transfers arm
bending (global feature) and flapping (local feature).

Finally, our framework enables arbitrary (zero-shot) motion style
transfer by learning to identify the style and content components of
any motion. By using datasets with style labeling or motion pairing,
previous methods learn style latent space labeled with general text,
e.g., happy or old [Aberman et al. 2020b; Park et al. 2021]. However,
motion styles are often ambiguous to describe in text, especially if
they are subtle, compositive or temporally changing. This results in
significant variability of text labels and a weak association between
given motion and labels [Kim and Lee 2019]. Therefore, while style
labeling can be effective for basic categories such as emotion, it may

hardly be extended to a broader range of styles that are challenging
to label. With this awareness, we consider motion style as a specific
way of movement to realize content (or task) in a given motion, and
do not relate it with other styles in different motions using general
text labels. Our approach allows using many publicly available
motion datasets for training and transferring truly unseen arbitrary
motion styles in test mode.
Figure 1 shows the idea of the Motion Puzzle framework: Given

one source motion (middle row) for content and target body parts
motions (yellow parts, bottom) for style, the Motion Puzzle frame-
work translate the motion of selected body parts in a source motion
to a stylized output motion (red parts, top). In addition, our frame-
work can be easily integrated with other motion generators. We
demonstrate a real-time motion style transfer by integrating with
an existing motion controller.

The contributions of our work can be summarized as follows:

• We present the first motion style transfer method that can
control the motion style of individual body parts.

• We propose a new two-step style adaptation network, BP-
StyleNet, consisting of BP-AdaIN and BP-ATN, to transfer
spatially and temporally global and local features of motion
style, which presents a distinctive advantage: time-varying
style features can be captured and translated.

• Our architecture that considers the human skeleton structure
and body parts makes arbitrary (zero-shot) style transfer
possible without style labeling or motion pairing of training
data.

2 RELATED WORK
In this section, we introduce previous research on stylizing human
motion and some image style transfer methods that contributed
much to motion stylization.

2.1 Arbitrary Image Style Transfer
The methods for transferring arbitrary image styles aim at zero-shot
learning to synthesize a content image adopting an arbitrary unla-
beled style of another image. Gatys et al. [2016] showed that the
style of an image can be represented by the Gram matrices, which
compute correlations between the featuremaps of pre-trained convo-
lutional networks. Their method includes a computationally heavy
optimization step, which can be replaced with faster feed-forward
networks [Johnson et al. 2016]. Huang and Belongie [2017] intro-
duced the adaptive instance normalization (AdaIN), which learns to
adapt the affine parameters to the style input to enable transferring
arbitrary styles. Since the AdaIN simply modifies the mean and
variance of the content image, it cannot sufficiently transfer the
semantic features of style images. Li et al. [2017] transformed con-
tent features into a style feature space by applying whitening and
coloring transformation (WCT) with aligning the covariance. WCT
is computationally heavy to deal with high dimensional features
and it does not perform well when content and style images are
semantically different. Sheng et al. [2018] introduced Avater-Net, a
patch-based style decorator that can transfer style features to the
semantically nearest content features. However, it cannot capture
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both global and local style patterns since the scale of patterns in the
style images depends on the patch size. Park et al. [2019] proposed a
style-attention network (SANet) to integrate the local style features
according to the semantically nearest content features for achieving
good results with evident style patterns.

In our work, we develop a method that applies the AdaIN in a way
that preserves the structure of human body to be able to transfer
the global style feature of individual body parts. In addition, we
leverage the attention network to transfer local style features to
semantically matched content features.

2.2 Motion Style Transfer
Previous work of motion style transfer using early machine learning
methods infers motion style with manually defined features. The
work of [Hsu et al. 2005] models the style difference of two motions
with a linear time-invariant (LTI) system, which can transform the
style of a new motion that is similar in content. Ma et al. [2010]
modeled style variation of individual body parts with latent param-
eters, which are controlled by user-defined parameters through a
Bayesian network. Xia et al. [2015] proposed a method to construct
the mixtures of autoregressive (MAR) models online to represent
style variations locally at the current pose and apply linear transfor-
mations to control the style. Another approach is to represent the
motion style in the frequency domain using the Fourier Transform
[Unuma et al. 1995; Yumer and Mitra 2016], which allows extracting
style features from a small dataset without a need to conduct spa-
tial matching between data. These studies on motion style transfer
are usually adequate only for a limited range of motions and may
require special processing, such as time-warping and alignment, of
the example motions or searching motion database.

Deep learning-based approaches have greatly improved the qual-
ity and the possible range of motion stylization. Holden et al. [2017a;
2016] showed that the motion style can be transferred based on
the Gram matrices [Gatys et al. 2016] through motion editing in
the latent space. Du et al. [2019] presented a conditional Varia-
tional Autoencoder (CVAE) with the Gram matrices to construct the
style-conditioned distribution for human motion. These approaches
require much computing time to extract style features through op-
timization and have a limitation in capturing complex or subtle
motion features, making style transfer between motions with sig-
nificantly different contents ineffective. Mason et al. [2018] applied
few-shot learning to synthesize stylized motions with limited mo-
tion data. However, similarly to [Du et al. 2019], this method is
confined to specific types of motion, such as locomotion.
Recently, Aberman et al. [2020b] applied the generative adver-

sarial networks (GAN) based architecture with the AdaIN from
FUNIT [Liu et al. 2019a] model used in image style transfer. They
alleviated the restrictions on training data by allowing for train-
ing the networks with an unpaired dataset with style labels while
preserving motion quality and efficiency. It, also notably, can trans-
fer style from videos to 3D animations by learning a shared style
embedding for both 3D and 2D joint positions. Park et al. [2021] con-
structed a spatio-temporal graph to model a motion sequence, which
improves style translation between significantly different actions.
Their framework generates diverse stylization results for a target

style by introducing a network that maps random noise to various
style codes for the target style. However, the above approaches have
two limitations. First, they require labeled data for content or style
to construct adversarial loss of GAN-based model, making zero-
shot (arbitrary) motion style transfer impossible. They cannot use
many publicly available, unlabeled motion datasets, while ease of
obtaining a wide range of data is critical for a deep learning method
to generalize to the data in the wild. Second, style transfer using
only the AdaIN cannot capture time-varying motion style. Since
the AdaIN simply modifies the mean and variance of the content
features to translate the source motion, it captures temporally global
features well but loses temporally local features. Wen et al. [2021]
proposed a flow-based motion stylization method. Its probabilis-
tic structure allows to generate various motions with a specific
set of style, context and control, but it also suffers from capturing
time-varying motion styles.
In contrast, our framework achieves high-quality motion style

transfer by using a novel model structure that does not require
data labeling for adversarial loss. Therefore, our framework can
transfer truly unseen arbitrary motion styles. In addition, we solve
the problem of capturing time-varying motion style by developing
BP-StyleNet, which combines AdaIN-based module for the global
style feature and the attention module for the local style feature.

2.3 Skeleton-based Graph Networks
Since the human skeleton has specific connectivity, researchers
have proposed network structures and associated operations that
respect the skeleton topology to model correlation between joints.
Zhou et al. [2014] constructed a partition-based structure of hu-
man skeleton and used a graphical representation of the conditional
dependency between joints to model variations of human motion.
Yan et al. [2018] proposed a spatio-temporal graph convolution
network (STGCN) to deal with skeleton motion data. STGCN con-
sists of spatial edges that connect adjacent joints in the human
body and temporal edges that connect the same joint in consecutive
frames. The skeleton-aware graph structures have been success-
fully adopted in many applications [Huang et al. 2020; Li et al. 2019;
Shi et al. 2019a,b; Si et al. 2018]. Aberman et al. [2020a] proposed
skeleton-aware operators for convolution, pooling and unpooling
for motion retargeting between different homeomorphic skeletons.
Park et al. [2021] used STGCN for motion style transfer.
Most previous work on deep learning-based motion style trans-

fer [Aberman et al. 2020b; Du et al. 2019; Holden et al. 2017a, 2016;
Smith et al. 2019] did not consider the hierarchical spatial and tempo-
ral structure of the human skeleton. Park et al. [2021] used STGCN
to consider the skeletal joint structure during the convolution but
did not take the human body part topology into account for the
style injection. In this work, we also use STGCN to represent spatial-
temporal change of human motion but go a significant step further
by proposing novel style adaptation networks, BP-StyleNet that
consider human body parts during style injection process. Thanks
to this skeleton-aware transfer network, our framework can control
style transfer per body part, which previous studies have not made
possible.
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Fig. 2. The overall network architecture of our Motion Puzzle framework. Our framework can transfer the styles of some body parts in the target motion to
the corresponding body parts in the source motion. This figure illustrates a case where three target motions, each for the leg𝑀leg, spine𝑀spine, and arm𝑀arm,

are used to stylize the source motion𝑀src to generate the stylized output motion𝑀src. Target motions are encoded into multi-level style features f
𝐺𝑝,𝑖
𝑠 for the

legs, arms and spine, respectively, through the style encoder 𝐸𝑠 , and a source motion passes through the content encoder 𝐸𝑐 to extract a content feature f𝐺3
𝑐 .

The decoder 𝐷 of the framework receives the content feature and per-body-part multi-level style features, and progressively synthesizes a stylized whole-body
intermediate features f𝐺𝑖−1

𝑑
through a novel per-body-part style adaption network BP-StyleNet.

3 MOTION DATA REPRESENTATION AND PROCESSING
Before discussing our framework in detail, we first explain the
representation of motion data and the construction of the motion
dataset.

We denote a humanmotion set byM and its subset of𝑇 total num-
ber of frames byM𝑇 ⊂ M, with𝑀𝑇 being a random variable ofM𝑇 .
We represent a motion of length 𝑇 as𝑀𝑇 = [M1, . . . ,M𝑡 , . . . ,M𝑇 ],
where M𝑡 denotes a pose feature matrix at frame 𝑡 . Specifically,
we defineM𝑡 = [m𝑝

𝑗
,m𝑟

𝑗
, ¤m𝑝

𝑗
, ¤r𝑥 , ¤r𝑧 , ¤r𝑎]𝑛 𝑗𝑜𝑖𝑛𝑡

𝑗=1 = [M𝑡, 𝑗 ]
𝑛 𝑗𝑜𝑖𝑛𝑡

𝑗=1 , where
m𝑝

𝑗
∈ R3, m𝑟

𝑗
∈ R6 and ¤m𝑝

𝑗
∈ R3 are the local position, rotation and

velocity of joint 𝑗 , expressed with respect to the character forward-
facing direction in the same way as [Holden et al. 2016]. A joint
rotation is represented by the 2-axis (forward and upward vectors)
rotation matrix as in [Zhang et al. 2018]. Under the assumption that
the root motion plays a critical role in motion style, each joint infor-
mation is accompanied by the root velocity information: ¤r𝑥 ∈ R and
¤r𝑧 ∈ R are the root translational velocities in 𝑋 and 𝑍 directions
relative to the previous frame 𝑡 − 1, represented with respect to the
current frame 𝑡 , and ¤r𝑎 ∈ R is the root angular velocity about the
vertical (Y) axis.

Therefore, the dimension of our human motion feature with 𝑇
frames is𝑀𝑇 ∈ R𝑇×𝑛 𝑗𝑜𝑖𝑛𝑡×𝑑joint and that of our pose feature matrix
is M𝑡 ∈ R𝑛 𝑗𝑜𝑖𝑛𝑡×𝑑joint , where 𝑑joint = 15 is the degrees of freedom of
a joint. The data of our motion feature is arranged as a tensor of
𝑇 ×𝑛 𝑗𝑜𝑖𝑛𝑡 ×𝑑joint dimensions for our network architecture, whereas

[Holden et al. 2016] used 𝑇 × 𝑑body matrices, where 𝑑body is the
degrees of freedom of a pose.

3.1 Dataset Construction
We construct a motion dataset using the CMU motion data [CMU ],
which provides various motions with unlabeled styles. All motion
data are 60 fps and retargeted to a single 21-joint skeleton with
the same skeleton topology as the CMU motion data. An additional
dataset of [Xia et al. 2015] is used as unseen test data for quantitative
evaluation in Sec. 7.2. While motion data can have variable frame
lengths at runtime, we train our networks with motion clips of 120
frames for convenience. For this, a long motion sequence is divided
into 120-frame motion clips overlapping 60 frames with adjacent
clips.

Data augmentation. To enrich the training dataset, we augment
data in several ways. First, we mirror the skeleton to double the
number of original motion clips. Second, we obtain additional data
by changing the velocity of motion. For this, we randomly sample
a sub-motion clip 𝑀Δ𝑡 of length Δ𝑡 ∈ [𝑇2 ,𝑇 ] (𝑇 = 120 in our ex-
periment), and scale𝑀Δ𝑡 by a random factor 𝛾 , where 𝛾 ∈ [1, 2] if
Δ𝑡 < 3

4𝑇 or 𝛾 ∈ [0.5, 1] otherwise. The former effectively decreases
the velocity of the motion, and the latter increases it. The scaled
motion is either cut or padded to make 120 frames. We call this data
augmentation method temporal random cropping. We perform the
temporal random cropping on input motion clip data with the rate
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Fig. 3. Illustration of the spatial-temporal
graph. Vertices are denoted as yellow circles.
Red, green and blue vertices denote 0, 1 and 2
edge distances from 𝑣𝑡,𝑗 . Black bones consti-
tute the spatial edges, and dotted lines make
the temporal edges. Note that this figure is
only to visualize the connections of vertices
from the perspective of the skeleton structure.
The features of each vertex in the graph are
not directly related to vertex positions.

of 0.2 during training. Finally, we build a training dataset of about
120K motion clips of 120 frames in 60fps.

4 MOTION PUZZLE FRAMEWORK
Figure 2 shows the overall architecture of the Motion Puzzle frame-
work. Inputs to our framework are one sourcemotion for the content
and multiple target motions, each for stylizing one or more body
parts, and the output is a stylized whole-body motion.

To encode and synthesize complex human motions in which nu-
merous joints move over time in spatially and temporally correlated
manners, we use a spatial-temporal graph convolutional network as
the basis of our framework and employ a graph pooling-unpooling
method to keep the graph in accordance with human’s body part
structure (Sec. 4.1). Maximum five target motions are encoded into
multi-level style features for the legs, arms and spine, respectively,
through the style encoder (Sec. 4.2), and a source motion passes
through the content encoder to extract a content feature (Sec. 4.3).
The decoder of the framework receives the content feature and
per-part multi-level style features, and synthesizes a stylized whole-
body motion. In this process, each level of style feature is adapted
progressively into the spatial-temporal feature for the correspond-
ing body part through a novel per-body-part style transfer network
named BP-StyleNet (Sec. 4.4).

4.1 Skeleton based Graph Convolutional Networks
Skeletal graph construction. A human motion𝑀𝑇 has a temporal

relationship in the sequence of pose features M1, . . . ,M𝑇 , each of
which shows hierarchical spatial relationship among the skeletal
joints. We use a spatial-temporal graph to model these characteris-
tics. Specifically, we follow the graph structure proposed by [Yan
et al. 2018], summarized below.
Figure 3 shows an example of a spatial-temporal graph 𝐺1 =

(𝑉1, 𝐸1) featuring both the intra-body and inter-frame connections
for a skeleton sequence with 𝑛joint joints and 𝑇 frames. The vertex
set 𝑉1 = {𝑣𝑡, 𝑗 |𝑡 = 1, . . . ,𝑇 and 𝑗 = 1, . . . , 𝑛joint} corresponds to all
the joints in the skeleton sequence. The edge set 𝐸1 consists of two
kinds: Spatial edges 𝐸𝐵 = {𝑣𝑡, 𝑗𝑣𝑡,𝑖 | ( 𝑗, 𝑖) ∈ 𝑆}, where 𝑆 is a set of
connected joint pairs, connect adjacent joints at each frame 𝑡 , and

Fig. 4. Body part preserving pooling and unpooling of the spatial-temporal
graph. Blue arrows indicate the vertices used by each pooling kernel along
the kinematics chain directions.

the temporal edges 𝐸𝐹 = {𝑣𝑡,𝑖𝑣𝑡−1,𝑖 } connect the vertices for the
same joint in adjacent time frames.

Graph convolution. We describe the spatial-temporal graph con-
volution using the case of vertex 𝑣𝑡, 𝑗 in graph 𝐺1 shown in Fig. 3.
The spatial graph convolution at frame 𝑡 is formulated as follows
[Yan et al. 2018]:

𝑓𝑜𝑢𝑡 (𝑣𝑡, 𝑗 ) =
∑︁

𝑣𝑡,𝑖 ∈B𝑡,𝑗

1
𝑍𝑡, 𝑗

𝑓𝑖𝑛 (𝑣𝑡,𝑖 ) ·w(𝑑 (𝑣𝑡,𝑖 , 𝑣𝑡, 𝑗 )), (1)

where 𝑓 denotes the feature map, e.g., 𝑓 (𝑣𝑡, 𝑗 ) = M𝑡, 𝑗 for graph 𝐺1
if no operation has been performed yet, and B𝑡, 𝑗 is the neighboring
vertices for convolving 𝑣𝑡, 𝑗 , defined as the 𝐾 edge-distance neighbor
vertices 𝑣𝑖 from the target vertex 𝑣 𝑗 :

B𝑡, 𝑗 = {𝑣𝑡,𝑖 |𝑑 (𝑣𝑡,𝑖 , 𝑣𝑡, 𝑗 ) ≤ 𝐾}, (2)

where 𝐾 = 2 for 𝐺1.
The weight function w provides a weight vector for the convo-

lution, and we choose to model it as a function of edge distance
𝑑 (𝑣𝑡,𝑖 , 𝑣𝑡, 𝑗 ). That is, the vertices of the same color in Fig. 3 are given
the same weight vectorw to convolve 𝑣𝑡, 𝑗 . Note that while the num-
ber of convolution weight vectors is fixed, the number of vertices in
B𝑡, 𝑗 varies, of which effect is normalized by dividing by the number
𝑍𝑡, 𝑗 of vertices of the same edge distance. The convolution in the
temporal dimension is conducted straightforwardly as regular con-
volution because the structure of the temporal edge is fixed. Graph
convolutions on 𝐺2 and 𝐺3 are performed in the same way with
𝐾 = 1.

Graph Pooling and Unpooling. Recent image transfermethods [Kar-
ras et al. 2019; Liu et al. 2019a] show remarkable performance in
translating images by gradually increasing resolution and adding
details while unpooling (upsampling) high-level features and inject-
ing style features. Following this idea, we incorporate the pooling
and unpooling method into our spatial-temporal graph to handle
and extract features from the low (local) to high (global) level.
We use a standard average pooling method for the temporal di-

mension of the graph as it is uniformly structured with vertices
sequentially connected along time. However, as its spatial dimen-
sion is non-uniformly structured, standard pooling methods are not
applicable. For this, several methods [Aberman et al. 2020a; Yan et al.
2019] exist to preserve the skeletal structure for motion retargeting
and synthesis. We devise a similar graph pooling method (Fig. 4),
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with a difference being that our pooling operator (blue arrow) aver-
ages consecutive vertices along the kinematic chain only within the
same body part to retain the individuality of the body parts. As a
result of pooling, our framework uses graph structures𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖 )
in varying resolutions. Specifically, |𝑉1 | = 21 ×𝑇 , |𝑉2 | = 10 × 𝑇

2 and
|𝑉3 | = 5 × 𝑇

4 . Note that each vertex 𝑣𝑡, 𝑗 in 𝐺3 corresponds to each
of the 5 body parts. The edges 𝐸2 and 𝐸3 are constructed similarly
as 𝐸1.
Unpooling is conducted in the opposite direction of the pooling.

We use the nearest interpolation for upscaling the temporal dimen-
sion. For the spatial dimension, we unpool the joint dimension by
mapping the pooled vertices to the previous skeleton structure.

4.2 Style Encoder
We develop our style encoder to extract the style features in multi-
level for gradual translation. The style encoder 𝐸𝑠 is a concatenation
of multi-level encoding blocks 𝐸𝐺𝑖

𝑠 , 𝑖 ∈ {1, 2, 3} corresponding to
graph 𝐺𝑖 , each of which consists of a STGCN layer followed by a
graph pooling layer. Each encoding block progressively extracts
the intermediate style feature f𝐺𝑖

𝑠 = 𝐸
𝐺𝑖
𝑠 (f𝐺𝑖−1

𝑠 ). As a result, given
a target motion𝑀𝑝 , the style encoder 𝐸𝑠 extracts multi-level style
features.

[f𝐺𝑝,𝑖

𝑠 ]3𝑖=1 = 𝐸𝑠 (𝑀𝑝 ), (3)

where𝐺𝑝,𝑖 is the graph from𝑀𝑝 , f
𝐺𝑝,1
𝑠 ∈ R21×𝑇p×𝐶 , f𝐺𝑝,2

𝑠 ∈ R10×
𝑇p
2 ×2𝐶

and f
𝐺𝑝,3
𝑠 ∈ R5×

𝑇p
4 ×4𝐶 with 𝑇p being the frame number of 𝑀𝑝 and

𝐶 being the feature dimension. These style features are used to
transfer styles progressively during the decoding process.
Each level of feature f𝐺𝑝,𝑖

𝑠 can be divided into five part-features
that correspond to the five body parts thanks to STGCN and the
part-preserving pooling scheme.

f
𝐺𝑝,𝑖

𝑠 = [f𝐿𝐿𝑝,𝑖𝑠 , f
𝑅𝐿𝑝,𝑖
𝑠 , f

𝑆𝑃𝑝,𝑖
𝑠 , f

𝐿𝐴𝑝,𝑖

𝑠 , f
𝑅𝐴𝑝,𝑖

𝑠 ], (4)

where 𝐿𝐿, 𝑅𝐿, 𝑆𝑃, 𝐿𝐴, and 𝑅𝐴 denote subset vertices of graph 𝐺
corresponding to the left leg, right leg, spine, left arm, and right arm,
respectively. This structure-aware style transfer is reasonable for the
graph convolution-based approach and leads to a better stylization
performance, as will be shown in Sec. 7.2.
Leveraging this division, from one target motion, we can select

only a subset of features corresponding to the target body parts
to apply the encoded style, and for other body parts, we can use
a subset of encoded style features of other target motion. Thus,
the whole set of style features can be made by combining these
part-features from up to 5 different motions 𝑝, . . . , 𝑡 .

f𝐺𝑖
𝑠 = [f𝐿𝐿𝑝,𝑖𝑠 , f

𝑅𝐿𝑞,𝑖
𝑠 , f𝑆𝑃𝑟,𝑖𝑠 , f𝐿𝐴𝑠,𝑖

𝑠 , f𝑅𝐴𝑡,𝑖
𝑠 ] . (5)

Note that each part-feature is allowed to have different temporal
lengths. This approach gives much freedom for controlling styles.
We can use only one target motion for the whole body parts (𝑝 =

. . . = 𝑡 ) or three motions for the arm, spine, and leg (𝑝 = 𝑞 and
𝑠 = 𝑡 ), both of which can be general use cases of our method. For
those parts that we want to preserve the original style of the source
motion, the style feature of the source motion can be used. Hereafter,
we will omit motion IDs 𝑝, . . . , 𝑡 but assume that f𝐺𝑖

𝑠 is made by one
or more motions. Figure 2 shows a case where three target motions

Fig. 5. BP-StyleNet on𝐺𝑖 level. It transfers the global and local characteris-
tics of a style feature f𝐺𝑖

𝑠 to f𝐺𝑖

𝑑
via two-step transfer modules, BP-AdaIN

and BP-ATN.

𝑀leg, 𝑀spine, and 𝑀arm are used for transferring styles to the legs,
spine, and arms.

4.3 Content Encoder
The content encoder 𝐸𝑐 has a similar structure as the style encoder.
The differences are that every STGCN layer is preceded by Instance
Normalization (IN) to normalize feature statistics and remove style
variations, and only the final output f𝐺3

𝑐 is used for the content
feature. As a result, the content encoder extracts the style-invariant
latent representation for motion. Given a source motion𝑀src, the
encoding process (blue part in Fig. 2) is written as:

f𝐺3
𝑐 = 𝐸𝑐 (𝑀src), (6)

which maps the low-level joint feature 𝑀src ∈ R21×𝑇𝑐×𝑑joint to a
high-level body part content feature f𝐺3

𝑐 ∈ R5×
𝑇𝑐
4 ×4𝐶 .

Same as the style feature, the content feature has the graph struc-
ture in accordance with human’s five body parts, which plays a key
role not only in better reconstructing human motion but also in
performing per-body-part style transfer during the decoding step.

4.4 Decoder
The decoder 𝐷 (green part in Fig. 2) transforms the content feature
f𝐺3
𝑐 into an output motion 𝑀src using the multi-level target style
features [f𝐺𝑖

𝑠 ]3
𝑖=1.

𝑀src = 𝐷 (f𝐺3
𝑐 , [f𝐺𝑖

𝑠 ]3𝑖=1) (7)

The decoder network takes an inverse form of the encoder networks.
Similarly to the multi-level style adaptation module for image style
transfer [Sheng et al. 2018], we progressively generate the inter-
mediate features f𝐺𝑖−1

𝑑
= 𝐷𝐺𝑖 (f𝐺𝑖

𝑑
) starting from f𝐺3

𝑑
(= f𝐺3

𝑐 ), with
dim(f𝐺𝑖

𝑑
) = dim(f𝐺𝑖

𝑐 ). Each level of decoding block𝐷𝐺𝑖 is composed
of our novel style adaption network BP-StyleNet and an unpooling
layer.

BP-StyleNet. In order to transfer motion styles, we propose BP-
StyleNet. As shown in Fig. 5, it translates a decoded content feature
f𝐺𝑖

𝑑
into feature f̃𝐺𝑖

𝑑
with style feature f𝐺𝑖

𝑠 via two-step transfer
modules, namely BP-AdaIN and BP-ATM. In the first step, BP-AdaIN
(Adaptive Instance Normalization) transfers the global statistics of
style feature to generate f̂𝐺𝑖

𝑑
. Next, BP-ATN (attention network)
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Fig. 6. Example of applying BP-AdaIN (blue boxes) on 𝐺2 level. The BP-
AdaIN module injects style feature f𝐺2

𝑠 into f𝐺2
𝑑

by body part.

transfers the local statistics of style feature to create f̃𝐺𝑖

𝑑
, which now

reflects both the global and local traits of style feature.
The BP-AdaIN module takes f𝐺𝑖

𝑑
as input and injects style feature

f𝐺𝑖
𝑠 by applying AdaIN by body part:

BP-AdaIN(f𝐺𝑖

𝑑
, f𝐺𝑖
𝑠 ) = [AdaIN(f𝐿𝐿𝑖

𝑑
, f𝐿𝐿𝑖𝑠 ), . . . ,AdaIN(f𝑅𝐴𝑖

𝑑
, f𝑅𝐴𝑖
𝑠 )] .

(8)
Figure 6 shows an example of how BP-AdaIN injects style features
into each body part in 𝐺2. The style injection process of AdaIN is
conducted as:

AdaIN(f𝑃𝑖
𝑑
, f𝑃𝑖𝑠 ) = 𝛾𝑃𝑖 (f𝑃𝑖𝑠 )

(
f𝑃𝑖
𝑑

− ` (f𝑃𝑖
𝑑
)

𝜎 (f𝑃𝑖
𝑑
)

)
+ 𝛽𝑃𝑖 (f𝑃𝑖𝑠 ), (9)

where 𝑃 ∈ {𝐿𝐿, 𝑅𝐿, 𝑆𝑃, 𝐿𝐴, 𝑅𝐴}, ` and 𝜎 are the channel-wise mean
and variance, respectively. AdaIN scales the normalized f𝑃𝑖

𝑑
with a

learned affine transformation with scales 𝛾𝑃𝑖 and biases 𝛽𝑃𝑖 gener-
ated by f𝑃𝑖𝑠 . Finally, we feed output feature into STGCN1 layer and
generate the first stage of the stylized feature.

f̂𝐺𝑖

𝑑
= STGCN1(BP-AdaIN(f𝐺𝑖

𝑑
)) . (10)

In the second step, the BP-ATN module transfers the locally se-
mantic style features of f𝐺𝑖

𝑠 via constructing an attention map with
f̂𝐺𝑖

𝑑
by body part. The BP-ATN module was inspired by [Fu et al.

2019; Park and Lee 2019; Wang et al. 2018], which use attention
block for action recognition, image segmentation, and image style
transfer. We feed the globally-stylized decoded feature f̂𝐺𝑖

𝑑
and style

feature f𝐺𝑖
𝑠 to the BP-ATN module that maps the correspondences

between the part-features of the same body part.

BP-ATN(̂f𝐺𝑖

𝑑
, f𝐺𝑖
𝑠 ) = [ATN (̂f𝐿𝐿𝑖

𝑑
, f𝐿𝐿𝑖𝑠 ), . . . ,ATN (̂f𝑅𝐴𝑖

𝑑
, f𝑅𝐴𝑖
𝑠 )] .

(11)
Figure 7 illustrates the ATN module. It channel-wise normalizes

the given style feature f𝑃𝑖𝑠 and the decoded content feature f̂𝑃𝑖
𝑑

to

make f𝑃𝑖𝑠 and f̂𝑃𝑖
𝑑
, and maps them into new feature spaces𝑚 and

𝑛 by convolution layers. Then we reshape the mapped features to

Fig. 7. Applying BP-ATN module by body part 𝑃𝑖 of𝐺𝑖 level. The BP-ATN
module transfers the locally semantic style features of f𝑃𝑖𝑠 via constructing
an attention map with f̂𝑃𝑖

𝑑
.

𝑚(f𝑃𝑖𝑠 ) ∈ R𝐶𝑖×|𝑉𝑖 |𝑠 and 𝑛 (̂f𝑃𝑖
𝑑
) ∈ R |𝑉𝑖 |𝑑×𝐶𝑖 , where |𝑉𝑖 | is vertex car-

dinality of part-features and𝐶𝑖 is the feature dimension of𝐺𝑖 . After
that, we perform amatrix multiplication between𝑚 and𝑛, and apply
a softmax layer to construct an attention map A ∈ R |𝑉𝑖 |𝑠×|𝑉𝑖 |𝑑 :

A𝛽,𝛼 =
exp(𝑚(f𝑃𝑖𝑠 )𝛼 · 𝑛 (̂f𝑃𝑖

𝑑
)𝛽 )∑ |𝑉𝑖 |𝑠

𝛼=1 exp(𝑚(f𝑃𝑖𝑠 )𝛼 · 𝑛 (̂f𝑃𝑖
𝑑
)𝛽 )

, (12)

where A𝛽,𝛼 measures the similarity between the 𝛼-th vertex of the
style feature and the 𝛽-th vertex of the decoded feature. The more
similar feature representation of the two vertices signifies the greater
spatial-temporal correlation between them. Meanwhile, we feed
f𝑃𝑖𝑠 to another convolution layer and reshape it to generate a new
feature, 𝑙 (f𝑃𝑖𝑠 ) ∈ R |𝑉𝑖 |𝑠×𝐶𝑖 . Then, we perform amatrixmultiplication
between A and 𝑙 (f𝑃𝑖

𝑠,𝑃
) to adjust the attention map to the style

feature. After that, we apply a convolution layer to the result and
add to f̂𝑃𝑖

𝑑
element-wise:

ATN(̂f𝑃𝑖
𝑑
, f𝑃𝑖𝑠 ) = A𝑇 ⊗ 𝑙 (f𝑃𝑖𝑠 ) ⊕ f̂𝑃𝑖

𝑑
, (13)

where ⊗ denotes matrix multiplication and ⊕ element-wise addition.
Finally, we feed the output feature into STGCN2 layer and generate
the second step of the stylized feature f̃𝐺𝑖

𝑑
;

f̃𝐺𝑖

𝑑
= STGCN2(BP-ATN (̂f𝐺𝑖

𝑑
, f𝐺𝑖
𝑠 )). (14)

Implementation details for the whole architecture are provided
in Appendix A.1.

5 TRAINING THE MOTION PUZZLE FRAMEWORK
Given a source motion 𝑀src ∈ M and a target motion 𝑀tar ∈ M,
we train the entire networks end-to-end by using the following
techniques and loss terms.

Mixing style code by body part. Anaive way of preparing the
training data for our per-body-part style transfer would be to con-
struct a batch of motions by combining one source and many target
motions, but it requires too much memory. To avoid this, we devise
a per-body-part style mixing scheme following the idea of [Karras
et al. 2019] to achieve a similar effect with only one source and one
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ALGORITHM 1: Style mixing by body part.

Input: Style feature set f𝐺𝑖
𝑠 from source motion and f𝐺𝑖

𝑠

′
from

target motion
Output: Mixed style feature set f𝐺𝑖

mix
/* 𝛾: predefined probability of style mixing */

if 𝑅𝑎𝑛𝑑 ( [0, 1]) < 𝛾 then
/* Number of parts to apply f𝐺𝑖

𝑠 */

𝑛switch = 𝑅𝑎𝑛𝑑𝐼𝑛𝑡 ( [1, 5])
/* Randomly selected 𝑛switch number of body parts */

𝑖𝑑𝑥switch = 𝑆𝑎𝑚𝑝𝑙𝑒 (𝑖𝑑𝑥all, 𝑛switch)
/* Mix style codes */

f𝐺𝑖
mix [𝑖𝑑𝑥switch ] = f𝐺𝑖

𝑠

f𝐺𝑖
mix [𝑖𝑑𝑥all − 𝑖𝑑𝑥switch ] = f𝐺𝑖

𝑠

′

else
/* Only use style code f𝐺𝑖

𝑠

′
*/

f𝐺𝑖
mix [𝑖𝑑𝑥all ] = f𝐺𝑖

𝑠

′

end

target motion. The idea is, instead of explicitly preparing target style
features, a style feature f𝐺𝑖

𝑠

′
from a target motion and a style feature

f𝐺𝑖
𝑠 from a source motion are mixed with a predetermined proba-
bility to apply the target and source style codes to some randomly
selected body parts, as implemented in Algorithm 1.

Motion reconstruction. By using the same motion for both
the source and target motions, the reconstruction loss enforces the
translator to generate output motions identical to the input motions.

L𝑟𝑒𝑐 = E𝑀src [∥𝑀
rec
src −𝑀src∥1] + E𝑀tar [∥𝑀

rec
tar −𝑀tar∥1],

𝑀rec
src = 𝐷 (f𝐺3

𝑐 , [f𝐺𝑖
𝑠 ]) (reconstructed source motion),

𝑀rec
tar = 𝐷 (f𝐺3

𝑐

′
, [f𝐺𝑖

𝑠

′]) (reconstructed target motion),

(15)

where f𝐺3
𝑐 = 𝐸𝑐 (𝑀src), [f𝐺𝑖

𝑠 ] = 𝐸𝑠 (𝑀src) while f𝐺3
𝑐

′
and [f𝐺𝑖

𝑠

′] are
from the target motion ([·]3

𝑖=1 is written as [·] for brevity). This loss
term helps our encoder-decoder framework achieve the identity
map.

Preserving content and style features. To guarantee that the
translated motion preserves the style-invariant characteristics of its
input source motion𝑀src and also preserves the content-invariant
characteristics of its input target motion 𝑀tar, we employ the cycle
consistency loss [Choi et al. 2020; Lee et al. 2018; Zhu et al. 2017].

L𝑐𝑦𝑐 = E𝑀src,𝑀tar [∥𝑀
cyc
src −𝑀src∥1 + ∥𝑀cyc

tar −𝑀tar∥1],

𝑀
cyc
src = 𝐷 (𝐸𝑐 (𝐷 (f𝐺3

𝑐 , [f𝐺𝑖

mix])), [f
𝐺𝑖
𝑠 ]),

𝑀
cyc
tar = 𝐷 (f𝐺3

𝑐

′
, 𝐸𝑠 (𝐷 (f𝐺3

𝑐 , [f𝐺𝑖
𝑠

′]))),

(16)

where [f𝐺𝑖

mix] is a mixed style feature set from [f𝐺𝑖
𝑠 ] and [f𝐺𝑖

𝑠

′]
(Alg. 1).

Preserving root motion. We encourage the output motion to
preserve the linear and angular velocities of the root of the source
motion𝑀src because the root motion plays a critical role in motion
content. The preservation of the root motion gives an additional
benefit of reducing foot sliding and improving temporal coherence

Fig. 8. Results of output motions (bottom) only with content features from
source motion (top), i.e., without applying style features.

of output motion. To this end, we employ a root loss as follows:

L𝑟𝑜𝑜𝑡 = E𝑀src,𝑀tar [∥𝑅𝑉 (𝐷 (f𝐺3
𝑐 , [f𝐺𝑖

mix])) − 𝑅𝑉 (𝑀src) ∥1], (17)

where 𝑅𝑉 (𝑀) extracts the root velocity terms [¤r𝑥 , ¤r𝑧 , ¤r𝑎] from a
motion.

Smoothness. To ensure that the output pose changes smoothly
in time, we add a smoothness term between temporally adjacent
pose features.

L𝑠𝑚 (𝑀,𝑀) = E𝑀 [∥𝑉 (𝑀) −𝑉 (𝑀)∥1] (18)

L𝑠𝑚 = L𝑠𝑚 (𝑀rec
src , 𝑀src) + L𝑠𝑚 (𝑀rec

tar , 𝑀tar)

+ L𝑠𝑚 (𝑀cyc
tar , 𝑀src) + L𝑠𝑚 (𝑀cyc

tar , 𝑀tar)
(19)

where 𝑉 (𝑀) is the sequence of pose feature differences between
adjacent frames.
The total objective function of the Motion Puzzle framework is

thus:

min
𝐸𝑐 ,𝐸𝑠 ,𝐷

L𝑟𝑒𝑐 + _𝑐𝑦𝑐L𝑐𝑦𝑐 + _𝑟𝑜𝑜𝑡L𝑟𝑜𝑜𝑡 + _𝑠𝑚L𝑠𝑚, (20)

where _𝑐𝑦𝑐 , _𝑟𝑜𝑜𝑡 and _𝑠𝑚 are hyperparameters for each loss term.
Please see training details in Appendix A.2.

6 DISCUSSION ON CONTENT FEATURE AND
ATTENTION MAP

This section examines what information is stored by the content
feature and how the attention map in BP-ATN represents the corre-
lation between the style feature and the decoded content feature by
visualizing them.

Figure 8 visualizes the content feature generated from our model.
Figure 8 shows the output motions generated only by the content
features obtained from a dancing motion (bottom) and a Pterosauria
motion (top). These motions were generated by nullifying the BP-
StyleNet by setting the scale and bias of BP-AdaIN to 1 and 0, and
the attention map of BP-ATN to 0. One can see that the content
feature retains the overall walking phase of the source motion while
filtering out its style variation of all body parts. This shows that our
content encoder mainly extracts the phase information of each body

ACM Trans. Graph., Vol. 41, No. 3, Article 33. Publication date: June 2022.



Motion Puzzle: Arbitrary Motion Style Transfer by Body Part • 33:9

Fig. 9. Visualization of the left leg attention map between the decoded
content feature from the source motion and the style feature from the
target motion (right), and corresponding poses to the marked high attention
regions (left).

part from a source motion while other characteristic information of
the motion is stored in the style feature.
Next, we visualize attention map A (Eq. 12) that represents the

correlation between the style feature f𝑃𝑖𝑠 and the decoded content
feature f̂𝑃𝑖

𝑑
. Figure 9 (right) shows the visualization of the attention

map of the left leg between a source (jumping while walking) and
target motions (repeated swing jumping). To examine the temporal
correlation between features in the attention map, the spatial dimen-
sion of each feature is averaged out, i.e.,A ∈ R𝑇s×𝑇d where 𝑋 and 𝑌
axes denote𝑇s and𝑇d. In the attention map visualization, the higher
the attention or correlation, the brighter the color. We identify cor-
responding poses in the source and target motions to some regions
with a high attention value. The yellow circle corresponds to the
left leg pose in the middle of jumping in both the source and target
motions (yellow borders), which shows that the jumping poses of
the source and target motions are found to have a high correlation,
promoting the transfer of jumping style of the target to the jumping
motion of the source. In addition, the four red circles correspond to
a landing pose in the target motion in a high correlation with four
landing poses in the source motion (red borders). This indicates that
periodic poses in a motion can be matched to a single pose in the
other motion, and in this case, the landing motion style of the target
will be transferred to all landing motions of the source.

The output motion shows that the swing jumping style and the
landing motion style from the target are well transferred to the
jumping motion and the periodic landing motions in the source.
This result suggests that the attention map creates correspondences
between similar actions in the source and target motions, driving
style transfer between these matched actions. For instance, if a

target motion contains walking, jumping, and kicking motions and
a source motion contains only a jumping motion. The style transfer
would occur from only the jumping motion of the target to the
source motion. By finding the correlation between the content and
style features, it significantly contributes to successful motion style
transfer, especially capturing time-varying motion style well.

7 EXPERIMENTS
We conduct various experiments to present interesting features and
advantages of our method and evaluate its performance. First, we
examine a unique capability of our method, transferring style by
body part, with respect to content preservation and per-part styliza-
tion. Second, we perform a comparison with other previous methods
[Aberman et al. 2020b; Holden et al. 2016] and variations of our
model with BP-ATN or BP-StyleNet ablated. Lastly, we showcase a
real-time motion style transfer combined with an existing character
controller.

Motion clips in the test dataset and the new unseen dataset used
in the experiment have variable frame lengths, as allowed by our
convolutional network-based architecture. All results are presented
after post-processing by the same method in [Aberman et al. 2020b]
including foot-sliding removal. In the figures, the source, target,
and resulting motion are shown in white, yellow, and red skeleton,
respectively. We used AI4Animation framework [Starke 2021] for vi-
sualizing results. The supplemental result video shows the resulting
motions from the experiments.

7.1 Motion Style Transfer by Body Part
First, we show several examples in Fig. 1 to demonstrate the utility of
the per-part style transfer approach. Suppose that a zombie walking
motion is given, and we want to modify it to make a staggering
zombie walking motion. One way would be to add a staggering
motion to the trunk and leg while keeping the style of waddling
with stretched arm in the source motion. Our method realizes this
by transferring the style of a staggering motion to only the leg and
spine while keeping the style of the given zombie motion for all
other body parts as shown in Fig. 1 (the 2nd column). In contrast,
previous whole-body style transfer methods may replace the zombie
style with a staggering style over the whole body. Figure 1 (the 1st
column) shows a case that adds a flapping style to a dance motion
by transferring the style of the arm motions of the target to the
corresponding parts in the source motion. Figure 1 (the 3rd and 4th
columns) shows the cases of changing the style of parts of a body
and the whole body, respectively.

Separate transfer to three body parts. Figure 10 shows the
results of transferring arbitrary unseen styles from 3 target mo-
tions, each for a different body part, to a single source motion. For
convenience, each sub-figure is referred to as (𝑖, 𝑗), meaning the
j-th image in the i-th row.
First, comparing the source motions and the output motions

shows that the contents of the source motions are well preserved
in the output motions. Although all target motions stylizing the
leg, arm and spine are clearly different from the source motion, the
output motions preserve the phases of walking (1, 5), (3, 4), and
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Fig. 10. Results of our per-body-part motion style transfer. For each row, two or three separate target motions (middle) for the leg, arm, and spine styles are
applied to the source motion (left, gray) to make the output motion (right, red). Note that the style code for each target motion is extracted from the target
parts marked in yellow.

jumping (2, 5) motions. This result suggests that our architecture
disentangles content and style well.
In the output motions, each body part shows a realistic motion

reflecting the style of its corresponding target motion despite the
differences in style and content between targetmotions. For example,
the output motion of (2, 5) takes the bent leg style of (2, 2), the
stretched arm style of (2, 3) like Pterosaur, and the spine style (2, 4)
of proud dancing while maintaining the jumping content of the
source (2, 1) motion. Also, the output motion of (3, 4) takes the
old spine and leg style of (3, 1) and the childlike arm style of (3, 3)
while maintaining the walking content of source (3, 1) motion. This
suggests that our per-body-part style transfer is localized well. The
locality is analyzed further next.

Locality. An essential requirement of our motion style transfer
using BP-StyleNet is that its effect is local to each body part while
maintaining the content of the source motion. To validate this, we
conduct the following experiment. We transfer a velociraptor style
from a target motion to only one part among the legs, arms and
spine of the source motion while keeping the original style for the
remaining body parts (Fig. 11). If our style transfer is well localized,
when the target style is transferred only to one part, other body
parts should keep their original style with only the affected part
reflecting the velociraptor style. Figure 11 shows that our Motion
Puzzle framework achieves this.
To quantitatively evaluate the locality, we measure the mean

squared displacement (MSD) for each joint between the source
motion and four output motions, in which three have only one part
stylized (arm, leg and spine) and one has all parts stylized (all) for
the experiments in Fig. 11. The more an output motion deviates from
the source motion, the larger MSD is. Table 1 shows that only the
style transferred joints have large MSDs, quantitatively confirming
the locality of our method. The table shows that the shoulder joints

Fig. 11. Locality test. The target style (yellow) is applied only to one body
part (red) while keeping the original style with the remaining body parts.
The bottom right figure shows the result when the target style is applied to
all body parts.

(13 and 17) are mildly affected (0.1 ≥ 𝑀𝑆𝐷 > 0.05) by the spine
style transfer, a natural result obtained by the graph convolution
across parts.

Per-part style interpolation. This experiment tests whether
our style transfer can be interpolated intuitively between two dif-
ferent style motions. Specifically, two style features [f𝐺𝑖

𝑠 ]3
𝑖=1 and

[f𝐺𝑖
𝑠

′]3
𝑖=1 from two different target motions are interpolated in the
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Fig. 12. Results of style interpolation by part. Interpolation parameter 𝛼 of the latent style space varies from 0 (Pteranodon style) to 1 (Velociraptor style).

MSD Leg Arm Spine

>0.1 3, 4, 7, 8 15, 16, 19, 20 12
>0.05 2, 3, 4, 6, 7, 8 14, 15, 16, 18, 19, 20 11, 12, 13, 17

Table 1. The indices of joints with mean squared distance (MSD) of 0.1
or more and 0.05 or more when only one part (leg, arm, or spine) is style
transferred for the experiment in Fig. 11. The displacement is measured
with respect to the global positions of each joint between source and output
motions. Length is normalized by dividing by the skeleton height. Joint
indices are the leg (1-8), arm (13-20), and spine (0, 9-12).

continuous latent style feature space and then applied to the target
body part. Figure 12 shows the result of transferring interpolated
style codes (1 − 𝛼) [f𝐺𝑖

𝑠 ]3
𝑖=1 + 𝛼 [f

𝐺𝑖
𝑠

′]3
𝑖=1 from 𝛼 = 0 to 𝛼 = 1 to

each body part. Since our style latent space is not normalized, linear
interpolation was used rather than spherical linear interpolation.
The experiment shows that the interpolation works well while main-
taining locality.

Long-term heterogeneous motion. We test the effectiveness
of our framework for long-term heterogeneous motions involving a
variety of behaviors. Figure 13 shows the whole body style transfer
results of a Pteranodon style to a neutral source motion over 3600
frames (1 min), including walking, jumping, transition, kicking and
punching. We found that our method can be applied robustly to

Fig. 13. Transferring a Pteranodon style to a long-term heterogeneous
source motion containing various behaviors.

long motions with multiple behaviors. Additional results of long-
term heterogeneous motion with various styles are provided in the
supplementary video.

7.2 Ablation Study and Comparison with Prior Work
7.2.1 Qualitative evaluation. We conduct an ablation study to ex-
amine the effect of BP-StyleNet and BP-ATN modules. In addition,
we compare our framework with those in previous work [Aberman
et al. 2020b; Holden et al. 2016]. Since the original framework of
[Aberman et al. 2020b] is effective for style-labeled motion data, we
instead construct a comparable framework (dubbed Conv1D+AdaIN)
that takes 1D convolution and AdaIN components from [Aberman
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et al. 2020b], and train it using the same losses as ours to enable
arbitrary style transfer.
Figure 17 shows the comparison of motion style transfer results

with our method (a) and its two variations (b and c), Conv1D+AdaIN
(d), and a 1D convolution model with Gram matrix as proposed
by [Holden et al. 2016] (e). For an ablation study, “w/o BP-ATN”
(b) is made by removing BP-ATN module from our framework,
only using BP-AdaIN to examine the effect of BP-ATN module, and
STGCN+AdaIN (c) ismade by removing BP-StyleNet and performing
AdaIN over the whole body, not by body part, to compare BP-AdaIN
and AdaIN. Please refer to the supplemental result video to clearly
view the differences between the resulting motions.

Effect of BP-ATN. The results of “w/o BP-ATN” (b) in Fig. 17 pre-
serve the content of the source motion well but reflect the style of
the target motion less than our results. In the second and fourth
rows, through the attention map in BP-ATN, jumping parts in the
target and source motions are matched to transfer style between
corresponding motions. The output motions (a) in the first and third
rows also show the advantage of BP-ATN. In the first row, the target
motion includes the style of a flapping bent arm, but the output of
(b) shows only bent arms that do not flap. Similarly, in the third row,
the target motion includes tripping while walking, but the output
motion of (b) does not exhibit the tripping style at all and only pre-
serves the content of stair climbing. Since AdaIN simply modifies
the mean and variance of the content features to translate the source
motion, it captures temporally global features (e.g., bending arms)
well but loses temporally local features (e.g., flapping motion). This
comparison demonstrates the importance of BP-ATN in transferring
local features.

BP-AdaIN vs. AdaIN. We found that the style of the target motion
is not transferred except for the spine part if AdaIN is used (c)
instead of BP-AdaIN for STGCN-based networks. This is because,
in the process of transferring style, individual motion styles of
each body part are not separated but instead averaged out over the
whole body. The overall extent of style transfer is even poorer than
Conv1D+AdaIN, a topology-agnostic approach. This result shows
that the BP-AdaIN should be used instead of AdaIN for high-quality
style transfer for graph-based networks.
As Conv1D+AdaIN (d) uses only AdaIN for style transfer, it re-

flects the global style features well but may not express temporally
local features. In addition, the output motions sometimes jiggle and
are distorted, which we attribute to the topology-agnostic 1D con-
volution scheme. In contrast, the STGCN-based models, (b) and (c),
consider human topology, which helps generate plausible motions
without motion distortion.

Results of (e) show that the degree of content preservation and
the plausibility of motion is lower than the compared models. Since
the content and style features are extracted from the same deep
features, leading to a dependency between content and style, this
approach has a limitation in transferring style between motions
with different contents.

7.2.2 Quantitative evaluation. We quantitatively measure the de-
gree of generation quality, content preservation, and style reflection
of three generative models: [Holden et al. 2016], Conv1D+AdaIN

Table 2. Quantitative evaluation on Xia dataset. We calculate FMD, CRA,
and SRA on 2500 stylized samples generated by each method on each trial.
The table reports the mean (± standard deviation) values for each metric
over 10 trials.

Methods FMD↓ CRA↑ (%) SRA↑ (%)
Real motions (Mgen) 96.04 90.24

Ours 9.38 ± 1.10 29.83 ± 1.35 54.94 ± 2.09
Conv1D+AdaIN 24.22 ± 2.29 29.09 ± 1.29 41.97 ± 2.01

[Holden et al. 2016] 29.40 ± 2.34 38.93 ± 2.09 41.92 ± 1.77

from [Aberman et al. 2020b], and ours. Specifically, we use three
metrics; Fréchet Motion Distance (FMD), content recognition accu-
racy (CRA), and style recognition accuracy (SRA). We compute FMD,
CRA, and SRA on the stylized set with all possible combinations
of source (content) and target (style) motions generated by each
model.
The FMD follows the approach of the widely used Fréchet In-

ception Distance (FID) [Heusel et al. 2017], which is the distance
between feature vectors calculated from real and generated images,
extracted from Inception v3 network [Szegedy et al. 2016] trained on
ImageNet [Russakovsky et al. 2015]. It is used to evaluate the qual-
ity and diversity of image generative models. The FMD measures
distance between feature vectors for motion. To this end, we train
a content classifier using the method of [Yan et al. 2018] and use
the feature vector obtained from the final pooling layer to measure
the FMD between the real and generated motions. A lower FMD
suggests higher generation quality.

We use the same content classifier to measure the CRA on gener-
ated motions since a model with a higher degree of content preser-
vation would generate more correctly classified motions. The higher
CRA indicates better performance with respect to content preserva-
tion. Similarly, we measure the SRA on stylized sets using another
classifier trained to predict the style label of motion. A higher SRA
means better performance for style reflection.

We test generative models using the Xia dataset Mtest [Xia et al.
2015], which is unseen to the models during training. We divide
Mtest into two halves, Mcls for classification andMgen for gener-
ation. We pre-train the action classifiers withMcls on six content
types (walking, running, jumping, kicking, punching, transitions)
and on eight style types (angry, childlike, depressed, neutral, old,
proud, sexy, strutting) for content and style classification, respec-
tively. We generate a stylized set using Mgen with each generative
model.Mgen is additionally used as a validation set for the action
classifiers and a reference distribution for FMD calculation. The
pre-trained content and style classifier show 96.04% and 90.24% ac-
curacies on Mgen, respectively, and each stylized set is evaluated
by these classifiers.

Table 2 shows the result. Reasonably, there is a trade-off between
the content and style classification. Although the method of [Holden
et al. 2016] shows the highest CRA, the style classification is the
lowest. Conv1D+AdaIN gives a slightly improved SRA with a lower
CRA. Our method increases the SRA performance by a large margin
while maintaining a higher CRA than Conv1D+AdaIN. Further, our
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Fig. 14. Overview of a real-time motion stylizer.

method outperforms the others in terms of FMD. This result suggests
that our method produces higher-quality stylized motions with a
greater degree of style reflection while not sacrificing the content
preservation performance too much. The reason why our method
shows strong SRA compared with CRA is presumably due to the
nature of the content feature. As the content feature mainly includes
the phase information while other characteristic aspects are stored
in the style feature (Sec. 6), output motions are strongly affected by
the style feature, which may lead to high SRA in comparison with
CRA.

7.2.3 Effect of post-processing. In the case of using the content fea-
ture and style feature from the samemotion, reconstructed motion is
sufficiently plausible without post-processing. However, combining
features from different motions may create foot sliding in the styl-
ized output motion. To remedy this, we compute foot contact labels
from the source motion and then use them to correct the output
foot positions to maintain the contact phase with inverse kinemat-
ics. The target foot position is set as the average foot position in
the contact phase. The supplementary video shows the comparison
between output motions with and without post-processing.

7.3 Real-time Motion Style Transfer
In this experiment, we integrate our Motion Puzzle framework
with a state-of-the-art motion controller, phase-functioned neural
networks (PFNN) [Holden et al. 2017b], to demonstrate real-time
motion style transfer. Our real-time system provides style control
parameters to select the target body part, target style, and the degree
of style reflection. To achieve real-time performance, we reduced the
required memory size by simplifying the networks while keeping
the core structure. For the detailed structure, please refer to Appen-
dix A.1. Figure 14 shows the overview of our real-time system to
generate the 𝑖-th frame of the stylized output pose. In the offline
process, our style encoder extracts 𝑁 (= 4 in our experiment) style
features from 𝑁 target motions and store them. In the online pro-
cess, the content encoder extracts content features from the source
motion of the duration [𝑖 − 30, 𝑖] (= 0.5sec) generated by PFNN.
When the user selects a target style and target body part, the system

Fig. 15. Snapshot of a real-time motion stylizer combined with a PFNN
motion controller.

applies the selected style feature to the content feature to gener-
ate the 𝑖-th frame pose with the translated style. Post-processing
is not conducted for this experiment as the contact information
of the source motion is not available. This real-time motion-style
controller runs in 30 FPS. Figure 15 shows a snapshot of the system.

8 LIMITATIONS AND FUTURE WORK
Our framework has limitations that need to be overcome by future
research. First, our framework does not consider contact or interac-
tion between the human body and the environment, so the motion
content related to contact is not well preserved. For example, Fig. 16
(top) shows a failure case that the content of crawling in the source
motion is not preserved when a zombie walking motion is given as
a style target. As a future step, we will improve the architecture to
include the contact information as an important content feature.

Second, our method is trained to preserve the root motion of the
source to the output, which may degrade style transfer quality if the
root motion of the target contains important style characteristics,
such as dancing. One way to improve this would be to develop an
additional module for creating the root velocity to reflect the style
of the target motion.
Another limitation is that our framework may not deal with

rapidly changing, dynamic motion because it is challenging to iden-
tify correspondences between abruptly changing motions within
long sequences of the content and target motions. Figure 16 (bot-
tom) shows such a case that the output motion fails to preserve the
content of rapid rotation in the source motion. A possible solution
would be to segment the long motions into sub-sequences and apply
the style transfer between the sub-sequences with similar content.

Since the style of each body part is controlled independently, the
resulting whole-body motion may not look coordinated or phys-
ically plausible if very different styles are applied over the body
parts. An important future work to address this problem would be
to add a final step of adjusting the part-stylized motion to improve
the naturalness of the motion from holistic viewpoint.

Our framework assumes a single motion as content. We observed
that sometimes strong preservation of motion content degrades
the effect of stylizing some part, which may be improved if the
content component can also be edited. In general, the applicability
of a motion editing method will be enhanced if both content and
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style can be concurrently edited. Thus, an important future research
direction would be to control both components by part. A recent
technique [Starke et al. 2021] that allows per-part motion editing
can be a good reference for this direction.
In this paper, we dealt with the motion style of a single person.

Solving the problem of stylizing the motion of a group of people,
such as collaboration or competition, is another interesting direction
for future research.

Fig. 16. Failure cases. Top: Transferring a zombie style to a crawling source
motion breaks the contact between the hand and the ground. Bottom: Rapid
rotation in a source motion is collapsed.

9 CONCLUSION
In this paper, we presented the Motion Puzzle framework for motion
style transfer. It was carefully designed to respect the kinematic
structure of the human skeleton, and thus it can control the motion
style of individual body parts while preserving the content of the
source motion. At the core of the Motion Puzzle framework is our
style transfer network, BP-StyleNet, which applies both the global
and local traits of target motion style to the source motion. As a
result, our framework can deal with temporally varying motion
styles, which was impossible in previous studies. In addition, our
model can be easily integrated with motion generation frameworks,
allowing a wide variety of applications, including real-time motion
transfer.
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Fig. 17. Comparison results of motion style transfer methods. The style of target motions (yellow) are applied to the source motions (grey) to make output
motions (our results in red, compared results in orange).
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A APPENDIX: IMPLEMENTATION

A.1 Network architecture
Table 3 shows the details of the network architecture of Motion
Puzzle framework. The size of spatial-temporal convolutional block
(STConv) filter is denoted as 𝑘𝑠 (# spatial kernel size)𝑘𝑡 (# temporal
kernel size)𝑠(# stride). The neighbor distances for STConv are 𝐾 =

(3, 2, 2) for 𝐺1,𝐺2 and 𝐺3, respectively (Eq. 2). All graph pooling
(Gr-Pool) and graph unpooling (Gr-UnPool) are performed before
each layers.

The style encoder 𝐸𝑠 consist of 3 STConv with 2 Gr-Pool, followed
by a STConv residual block (ResBlk). 𝐸𝑠 extracts style features for
each level graph 𝐺𝑖 from target motion𝑀tar and produces [f𝐺𝑖

𝑠 ]3
𝑖=1.

The output dimension of style features f𝐺𝑖
𝑠 are 𝑇1 × 𝐽1 ×𝐶1 = 𝑇 ×

21×128,𝑇2× 𝐽2×𝐶2 = 𝑇 /2×10×256 and𝑇3× 𝐽3×𝐶3 = 𝑇 /4×5×512.
Here, residual block follows the form used in [Liu et al. 2019a].

The content encoder 𝐸𝑐 receives a source motion as input, passes
it through 3 STConv and 2 Gr-Pool layers, followed by a STConv
residual block (ResBlK) to generate content feature f𝐺3

𝑐 . Every STConv
and ResBlk layer has Instance Normalization (IN) for removing style
variation. Note that we only extract content feature for𝐺3 level as
mentioned in Sec. 4.3.
The decoder 𝐷 has roughly a reverse structure of the encoder.

For each level, BP-StyleNet applies a corresponding style feature to
the decoded content feature. Details of BP-StyleNet are provided in
Table 3(c).

The BP-StyleNet on𝐺𝑖 level consists of BP-AdaIN, BP-ATN and 2
STConv between them. The BP-StyleNet receives a decoded content
feature f𝐺𝑖

𝑑
and a style feature f𝐺𝑖

𝑠 to generate a translated feature
f̃𝐺𝑖

𝑑
. Output shape 𝑇𝑖 × 𝐽𝑖 × 𝐶𝑖 and k𝑠 [𝑖]k𝑡 [𝑖]𝑠1 are noted in each

level of decoder part.
For the real-time motion style transfer in Sec. 7.3, we simplified

the networks to reduce the memory size. We removed the residual
blocks from the encoders and decoder and applied BP-StyleNet only

Layer Filter Act. Norm. Resample Output shape
𝑀tar 𝑇 × 21 × 15

Conv1×1 k𝑠1k𝑡 1𝑠1 - - - 𝑇 × 21 × 64
STConv k𝑠3k𝑡 7𝑠1 LReLU - 𝑇 × 21 × 128
STConv k𝑠2k𝑡 5𝑠1 LReLU - Gr-Pool 𝑇 /2 × 10 × 256
STConv k𝑠2k𝑡 5𝑠1 LReLU - Gr-Pool 𝑇 /4 × 5 × 512
ResBlk k𝑠2k𝑡 3𝑠1 LReLU - - 𝑇 /4 × 5 × 512

[f𝐺𝑖
𝑠 ]3

𝑖=1 [𝑇𝑖 × 𝐽𝑖 ×𝐶𝑖 ]3𝑖=1
(a) Style Encoder 𝐸𝑠 .

Layer Filter Act. Norm. Resample Output shape
𝑀src - - - - 𝑇 × 21 × 15

Conv1×1 k𝑠1k𝑡 1𝑠1 - - - 𝑇 × 21 × 64
STConv k𝑠3k𝑡 7𝑠1 LReLU IN 𝑇 × 21 × 128
STConv k𝑠2k𝑡 5𝑠1 LReLU IN Gr-Pool 𝑇 /2 × 10 × 256
STConv k𝑠2k𝑡 5𝑠1 LReLU IN Gr-Pool 𝑇 /4 × 5 × 512
ResBlk k𝑠2k𝑡 3𝑠1 LReLU IN - 𝑇 /4 × 5 × 512

f𝐺3
𝑐 𝑇 /4 × 5 × 512

(b) Content Encoder 𝐸𝑐 .

Layer Filter Resample Output shape

f𝐺3
𝑐 - - 𝑇 /4 × 5 × 512

BP-ResBlk k𝑠2k𝑡 3𝑠1 - 𝑇 /4 × 5 × 512
BP-StyleNet k𝑠2k𝑡 5𝑠1 - 𝑇 /2 × 10 × 256
BP-StyleNet k𝑠2k𝑡 5𝑠1 Gr-UnPool 𝑇 × 21 × 128
BP-StyleNet k𝑠3k𝑡 7𝑠1 Gr-UnPool 𝑇 × 21 × 64
Conv1 × 1 k𝑠1k𝑡 1𝑠1 - 𝑇 × 21 × 15

𝑀src 𝑇 × 21 × 15

(c) Decoder 𝐷 .

Layer Filter Output shape

f𝐺𝑖
𝑑

, f𝐺𝑖
𝑠 𝑇𝑖 × 𝐽𝑖 ×𝐶𝑖

BP-AdaIN - -
LReLU - -
STConv k𝑠 [𝑖 ]k𝑡 [𝑖 ]𝑠1 𝑇𝑖 × 𝐽𝑖 ×𝐶𝑖

BP-ATN - -
STConv k𝑠 [𝑖 ]k𝑡 [𝑖 ]𝑠1 𝑇𝑖 × 𝐽𝑖 × 2𝐶𝑖

f̃𝐺𝑖
𝑑

𝑇𝑖 × 𝐽𝑖 ×𝐶𝑖/2

(d) BP-StyleNet on𝐺𝑖 level.

Table 3. Architecture of Motion Puzzle framework.

in 𝐺3 and 𝐺2 levels. And i-frame translated pose is obtained by
slicing in [i-30, i] translated motion. As a result, we reduced the
memory size by more than 80% while maintaining a suitable quality
in the translated output motion.

A.2 Training Details
Our architecture is trained for 10 epochs with a batch size of 32.
Learning rates for all networks are set to 10−4. Training time is
about 5 hours with two NVIDIA GTX 2080ti. All networks are
implemented with PyTorch. We set _cyc = 1, _root = 1 and _sm = 1
in Eq. (20). We use the RAdam optimizer [Liu et al. 2019b] with
𝛽1 = 0 and 𝛽2 = 0.99. For better results, we adopt the exponential
moving averages [Karras et al. 2018] over all parameters of every
network.
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