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Abstract
Detecting anatomical landmarks on various human models with dynamic poses remains an important and challenging problem
in computer graphics research. We present a novel framework that consists of two-level regressors for finding correlations
between human shapes and landmark positions in both body part and holistic scales. To this end, we first develop pose invariant
coordinates of landmarks that represent both local and global shape features by using the pose invariant local shape descriptors
and their spatial relationships. Our body part-level regression deals with the shape features from only those body parts that
correspond to a certain landmark. In order to do this, we develop a method that identifies such body parts per landmark, by
using geometric shape dictionary obtained through the bag of features method. Our method is nearly automatic, as it requires
human assistance only once to differentiate the left and right sides. The method also shows the prediction accuracy comparable
to or better than those of existing methods, with a test data set containing a large variation of human shapes and poses.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Geometric algorithms, languages, and systems

1. Introduction

Analyzing and understanding human body shapes are important
problems in computer graphics research, with a number of applica-
tions such as registration, retargeting, and shape retrieval. Anatom-
ical landmarks on human bodies are essential features for obtain-
ing anthropometric information, but detecting the anatomical land-
marks remains a challenging problem due to the high variedness of
human shapes and poses.

A conventional approach for landmark detection involves finding
correspondences between a template body model with annotated
landmarks and a particular body shape, typically through mesh reg-
istration methods [CR03]. This registration-based approach is ef-
fective for the body shapes similar to the template, but has a lim-
ited capability in generalizing to the whole range of human shapes
with different poses. A more principled and potentially powerful
approach would be to learn and predict the relationship between
various body shapes and their landmark locations. In addition, a
good method should not require complex preprocessing such as
alignments on the input data.

In this paper, we solve the anatomical landmark detection prob-
lem on human models with dynamic poses by training a statisti-
cal regression model that learn connections between human body
shapes and landmarks. When trained with a data set of a wide range
of human shapes and poses, the regression-based method achieves
a higher accuracy than registration-based approaches. Specifically,
we show that the kernel canonical correlation analysis (KCCA)
method successfully models the correlation between human body
shapes and landmarks.

Under this regression framework, we develop several key ideas
that enable robust landmark detection against severe variations in
shape and pose. First, we develop a novel method that serves as
pose invariant coordinates of landmarks. This is achieved by rep-
resenting the position of a landmark with the feature vector in the
pose invariant, local descriptor space. In addition, since the map-
ping from vertices to local descriptor space is non-injective (e.g.,
left and right Stylions have the same feature vector), we augment
this representation with the spatial relationship information be-
tween landmarks, which is also described in a pose invariant man-
ner.

Second, in order to increase the regression accuracy, we develop
a two-level regression method that separately regresses body part-
level features and holistic features. The part-level regressor mod-
els the connection between the local feature of a landmark and the
shape of the body parts that are related with the landmark. To iden-
tify such body parts per landmark, we develop a method that uses
geometric shape dictionary obtained through the supervised bag of
features (S-BoF) method. The segmentation of body parts allows
for training the lower-level regressor with respect to only body parts
that are related with the landmark, and thus blocks the effect from
other unrelated body parts. We will show later that the body part
segmentation brings an additional benefit that reduces the search
space of landmarks. The global level regressor relates the holis-
tic shape characteristics with the spatial relationship between land-
marks, and this overcomes the non-injectivity of local features and
allows for the nearly automatic finding of landmarks.

Contributions. The main contribution of our approach is in the
novel framework of regression of locating landmarks on challeng-

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



D.-K. Jang & S.-H. Lee / Regression-Based Landmark Detection on Dynamic Human Models

Figure 1: Human models in dynamic poses in the dataset with
annotated landmarks: Proximal phalanges (1), Radiale (2), Acro-
miale (3), Iliocristale (4), Trochanterion (5), Patella (6), Calcaneus
(7) and Hallux (8). See top left figure for the landmark indices.

ing dynamic human models. The framework provides the follow-
ing advantages. First, through regression with KCCA, we can not
only search for landmarks for a body shape that can be registered
by a template model, but also find the landmarks for various body
shapes. Second, our shape descriptors that combine the global and
body part-level shape features are invariant to isometric deforma-
tion, and thus allow for various pose changes. The pose invariance
also makes any alignment such as registration, scale normalization,
and the origin adjustment unnecessary. Lastly, despite the short on-
line computation time, the accuracy of landmark prediction is rea-
sonably good and comparable to or better than other existing meth-
ods.

Data Set. We used a data set from SHREC’14 Track [PSR∗14].
The data set consists of 400 human models from 40 human sub-
jects (20 male and 20 female) from slim to obese shapes, each in
10 different dynamic poses. For landmark recognition, we anno-
tated seven landmarks (Proximal phalanges, Radiale, Acromiale,
Iliocristale, Trochanterion, Patella, Calcaneus and Hallux) manu-
ally on both sides of the body (Fig. 1). Data with this broad spec-
trum of body shapes and poses can be of great help in training a
landmark detector that generalizes to a wide range of human sub-
jects. All the human models and the annotated landmark data can be
downloaded from http://www.cs.cf.ac.uk/shaperetrieval/
shrec14/ and http://motionlab.kaist.ac.kr/, respectively.

2. Related Work

Due to its importance in shape analysis, researchers have devel-
oped various methods to describe local and global features of object
shapes. Spin image [JH99], heat kernel signature [SOG09, BK10],
and wave kernel signature [ASC11] are some examples of local de-
scriptors that represent the geometric information of a small neigh-
bor or a point. Global descriptors represent the overall features of a
shape. Among them, those methods created by combining local de-
scriptors are usually used in shape retrieval problems. Representa-
tive global descriptors include ShapeDNA [RWP06,RCB∗16], his-
tograms of area projection transforms [GL12], and deep aggrega-
tion of localized statistical features [FO16]. The most common
way to create a global descriptor is to use the bag of feature (BoF)
method [LBBC14, BBGO11, NNT∗15, TCF10, LGSX13], which
represents the global characteristics of a shape in terms of the oc-
currence frequencies of local shape features, analogous to the bag-
of-words methods in text retrieval. Among them, we use the method
of [LBBC14] in our preprocess stage to define a shape descriptor
through supervised learning.

The problem of predicting anthropometric landmarks has been
receiving growing attention. Giachetti et al. reported state-of-art
technologies for landmark prediction [GMP∗14]. Among them, the
surface-to-surface registration method [CR03] and graphical model
method [ASM06] showed better performances than other compared
techniques. [CR03] finds the landmark points through a nonrigid
spatial mapping from a template mesh to an input mesh. The non-
rigid ICP method is used for registration, but in general, such purely
geometric mesh registration methods do not guarantee the human-
likeness of the registered meshes. The method also requires repet-
itive alignment steps. [ASM06] uses the Markov network to repre-
sent the structure of landmarks. The method shows a high accuracy
when trained with a database of uniform poses (A-poses) with a rel-
atively high computation time. Both methods find correspondences
between the average data (e.g., template mesh) and the input data.
Therefore, the accuracy degrades as the input data gets dissimilar to
the average data. Moreover, these methods are not robust to varying
poses because of the limitations of the nonrigid ICP method [CR03]
or the usage of pose variant local features [ASM06]. In contrast, we
develop a regression-based method that models the correlation be-
tween the body shapes and the landmark positions by using pose
invariant local features. Thus, our method is more robust to shape
and pose variations.

Methods based on spectral analysis are independent of pose
changes. However, the accuracies reported in [LH13a, LH13b] are
not competitive yet. Wuhrer et al. [WAS10, WSX11] improved the
method of [ASM06] to account for varying poses. Compared to
these methods, our method shows a higher accuracy, even with
more challenging landmarks (e.g., Iliocristale and Trochanterion)
and poses (e.g., squatting).

Kernel canonical correlation analysis (KCCA) is a method that
finds the relationship between the two multidimensional variables
[HSST04]. In computer graphics, KCCA has been used for fa-
cial expression recognition [ZZZZ06, Hor07] and facial retarget-
ing [SCSN11]. For example, Fen et al. used KCCA to simultane-
ously control the deformation of a large number of local regions
with a small number of control points [FKY08]. In this paper, we
show that KCCA successfully finds connections between the 3D
body shapes and landmarks.
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3. Overview

Our goal is to detect landmarks on human models with various
shapes and poses, and we address this problem by developing a
pose invariant regression method of landmarks that depend on body
shapes. Our strategy is to perform KCCA for two types of data
pairs. One is between SBD (Segmented Body Part Descriptor) and
landmark positions in the local descriptor space, and the other is
between the global shape descriptor and spatial relationships be-
tween landmarks. In order to do this, the connection between the
human body shapes and landmark locations is learned from a train-
ing data set. The overall process of our method is divided into three
stages: preprocess, learning and regression for the locating of land-
marks, and landmark detection. Figure 2 illustrates the overview of
our method.

In the preprocess stage, we define a global shape descriptor for
a human shape and a segmented body part descriptor (SBD) that
represents parts of the human body shape related to a particular
landmark’s (Sec.4.1) and create pose invariant coordinates of land-
marks that can define the landmark locations regardless of the dy-
namic poses (Sec.4.2). In the learning and regression stage (Sec.5),
we find the connection between the body descriptors and coor-
dinates of landmarks, which were generated from the preprocess
stage for the training of human data set. Our learning strategy is
to perform KCCA for two types of data pairs. One is between
SBD and landmark position in local descriptor space, and the other
is between global shape descriptor and spatial relationships be-
tween landmarks. After this stage, we can use a trained predictor to
regress the coordinates of landmark corresponding to the input hu-
man body shape. Finally, in the landmark detection stage (Sec.6),
we use the regressed coordinates of landmarks to predict where
the landmarks are actually located in the given human body shape.
Each stage is detailed in the following sections.

4. Preprocess

All landmarks in the training human models are labeled {1, . . . ,8}
and {1′, . . . ,8′} in close order from the wrist (Proximal) to the an-
kle (Hallux) on both sides. Note that training models do not need to
be aligned, which is a strong advantage of our method. We assume
that various pose models of the same subject are created by isomet-
ric deformation. This assumption is needed in calculating the geo-
metric distance when defining the relationship between landmarks.
The location of the landmark is only dependent on the human’s
body shape. Other factors such as pose should not affect landmark
detection. To this end, we define pose invariant descriptors for hu-
man body shapes and also pose invariant coordinate system for the
landmark.

4.1. Pose Invariant Body Shape Descriptors

Since the geometric properties of a landmark is more strongly cor-
related with its local region than other distant regions (e.g., a land-
mark on the wrist depends more on the shape of the wrist than on
that of the elbow), defining an appropriate descriptor for a local
region that includes the landmark is important for the landmark de-
tection. Thus, we define the segmented body part descriptor that
characterizes the geometric feature of the body part. As a key idea
for this, we use the characteristics of a global shape descriptor that

uses the bag of features: Each atom of the geometric dictionary ob-
tained from the bag of features method represents some body parts.
Therefore, by collecting only the atoms associated with the body
parts that a landmark belongs to, we can define the local body part
descriptors.

The first step of this is to define a BoF-based global shape de-
scriptor, which is discussed next, followed by explaining the pro-
cedure for defining segmented body part descriptors.

4.1.1. Local Descriptor

A local descriptor represents the geometric structure of a point
in the small neighborhood. Among many local descriptors, we
use the scale invariant heat kernel signature (SI-HKS), which is
widely used to define the intrinsic geometric features of object
shapes [BK10]. Its invariance to isometric deformation makes the
descriptor independent of human pose changes. The SI-HKS is an
improved version of the heat kernel signature (HKS) [SOG09],
which solves the heat equation on manifold M with m vertices
(x1, . . . ,xm) that use the cotangent weight.

(∆M + ∂

∂ t )u(x, t) = 0

where ∆M denotes the Laplace-Beltrami operator and u(x, t)
is the heat distribution on vertex x of manifold M at time t. Given
some heat distribution u(x,0) = δ (dirac-delta) at time t = 0 as
an initial condition, one solution to the above equation is the heat
kernel:

ht(x,x) = ∑k≥1 e−vktφ 2
k

Here, φk and vk are the eigenfunctions and eigenvalues ob-
tained by the eigen-decompostion of Laplacian. The heat kernel
can serve as a local feature of the manifold’s geometry. For
example, a n-dimensional local descriptor for each vertex x can
be defined as (ht1(x,x),ht2(x,x), . . . ,htn(x,x)). By replacing this
local descriptor with a frequency ω1, . . . ,ωn through the Fourier
transform, a heat kernel signature becomes invariant to scale
(See [BK10] for details):

p(x) = (|H(ω1)| , . . . , |H(ωn)|)>, (1)

which is used as our local descriptor for a vertex x. The SI-HKS for
all the m vertices of the human body shape M is then defined as a
n×m matrix

P(M) = (p(x1), . . . ,p(xm)). (2)

4.1.2. Global Body Shape Descriptor

We use the bag of features as the global shape descriptor. In gen-
eral, the bag of feature method creates a geometric dictionary ma-
trix D = (d1 . . .dv) ∈ Rn×v first, and then expresses the local de-
scriptors P ∈ Rn×m (Eq. (2)) as codes Z(P,D) ∈ Rv×m with re-
spect to D. Finally, a v-dimensional global shape descriptor f(P,D)
is obtained by pooling the codes f(P,D) = Z(P,D)h where h is
a pooling term, weighting each point proportionally to its area ai,
h = (a1, . . . ,am)

>/∑
m
i=1 ai.

For a global shape descriptor, we use the method of [LBBC14],
which improves the standard BoF that constructs a dictionary in
an unsupervised manner by using clustering for all the training hu-
man body shapes M, and by learning both the dictionary and the
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Figure 2: The pipeline of our method. It consists of three major stages: preprocess, learning and regression, and detection of landmarks.

sparse codes in a supervised manner through the bi-level optimiza-
tion with the objective function below:

Z∗(P,D) = argmin
D

∑
M∈M

`((argmin
Z
||P−DZ||2F +λ ||Z||1) ·1),

`= α`++(1−α)`−

`+(Z,Z+) = || f(Z)− f(Z+)||1
`−(Z,Z+,Z−) = max{0,µ + || f(Z)− f(Z+)||1

−|| f(Z)− f(Z−)||1}
(3)

where `(·) is the hinge loss that tries to separate by at least µ be-
tween the dissimilarity of the positive and the negative pairs. The
codes Z and Z+ are from the same subject, affected by some trans-
formation, and Z− is from different subject. The weight factor λ

is for regularization and α is controlled for trade-off between the
false positive and false negative rates. The solution to Eq. (3) pro-
duces a dictionary D that optimally separates between the BoFs of
positive and negative pairs, and the optimal code

Z∗(P) = (z∗(p1), . . . ,z∗(pm)), (4)

for each P(M).

4.1.3. Segmented Body Part Descriptor Corresponding to
Landmark

We have defined the global shape descriptor f that features the
whole body shape, independent of its pose. Here, we will define
another shape descriptor that expresses the shape of the body parts
related with a particular landmark.

The supervised bag of feature method provides the geometric
dictionary D = (d1 . . .dv), in which the column vectors di are ge-
ometric atoms that represent v number of body parts. In general,
the body parts are not mutually exclusive, and thus several atoms
are associated with a particular landmark. Our strategy is to collect
only those atoms that are related with a landmark and define the
landmark’s shape descriptor with these atoms.

Suppose that xi is the vertex of the landmark i, and its code is

z∗(pi) = (z∗1, . . . ,z
∗
v)
>. (5)

Note that z∗i indicates the weight of pi corresponding to di. There-
fore, the atoms that have non-zero values can be considered to be
related with pi. Thus, our method to identify a subset of atoms that
are associated with a landmark i is as follows: For every mesh in
the training set, we compute pi for xi followed by obtaining z∗(pi),
from which we find the atoms with non-zero weights. Among all
the meshes in the training set, if an atom has non-zero weights for
more than a certain ratio (62.5% in our experiment), the atom is
determined to be related to the landmark. Among the 64 atoms
in total, the number of atoms related with each landmark are 5
(Proximal phalanges), 4 (Radiale), 6 (Acromiale), 9 (Iliocristale),
8 (Trochanterion), 3 (Patella), 6 (Calcaneus), and 4 (Hallux).

From this analysis, we can define the segmented body part de-
scriptor, dubbed SBDi for a landmark i,

SBDi(M) = (z∗i (p1), . . . ,z∗i (pm)) ·h (6)

where z∗i (p), which is a subvector of z∗(p), includes only the ele-
ments corresponding to the atoms related with a landmark i. Fig-
ure 3 shows the vertices that correspond to the atoms related with
each landmark by visualizing ||z∗i (p j)|| for each vertex x j with
color for a landmark i. The SBD has strong advantages in learn-
ing and landmark detection. Since the SBD only describes features
of the only body parts that are related with a landmark, predict-
ing the landmark based on SBD is not affected by other unrelated
parts, which may be the case with the prediction based on the global
shape descriptors. Regarding the landmark detection, SBD signifi-
cantly reduces the candidate vertices, making detection performed
quickly.

4.2. Pose Invariant Coordinates of Landmark

We need appropriate coordinates that are invariant to isometric de-
formation, pose, as well as the number and order of vertices, in
order to detect landmarks, regardless of such changes. The world
coordinates are not invariant to isometric deformation and pose
changes, and the vertex index is not invariant to the vertex size
and order changes. Our key idea to define the landmark coordi-
nates is to use both the landmark’s position and the spatial relation
between the landmarks in the space of the local shape descriptor.
A limitation of this approach, however, is that the coordinates are
symmetrical in the sagittal plane, e.g., the left and right ankles have
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Figure 3: The segmented body parts corresponding to each landmark. The color of a vertex x j for a landmark i is set darker proportional to
||z∗i (p j)||.

the same coordinates. To overcome this problem, we additionally
use the geodesic distance between the landmarks.

4.2.1. Local Descriptor as Landmark Position

The local descriptor p(xi) is a point in Rn and it satisfies some
important properties as coordinates. Figure 4 shows the first three
coordinates of p from the landmarks of 160 human subjects. One
can see that the points form clusters per landmark, which indicates
that the local descriptor, if used as the landmark coordinate, can dis-
criminate between the landmarks. In addition, since p is invariant
to isometric deformation, it is independent of pose changes. How-
ever, the map xi → p(xi) from a vertex xi to p(xi) is not injective,
i.e., many points on a body can be mapped to the same position
in the local descriptor space. To cope with this, we introduce addi-
tional elements to the coordinates, namely the spatial relationship
between landmarks, as discussed next.

Figure 4: The first three dimensions of the local descriptors of
landmarks. Same colors indicate the same landmarks.

4.2.2. Spatial Relationship between Landmarks

Due to the similarity in shapes throughout humans, the spatial re-
lationships between landmarks show consistent patterns. We use
these characteristics to detect the landmark positions. For this, we
consider three types of spatial relationships.

First, we use the relative positions between landmarks in the lo-
cal descriptor space. Specifically, we use

Vi = ((pi−p1)
>, (pi−pi−2)

>, (pi−pi−1)
>)>, (7)

where pi is the local descriptor corresponding to landmark i. The

positions of pi relative to pi−2 and pi−1 are selected by the assump-
tion that neighboring landmarks show a higher correlation than dis-
tant landmarks. The relative position between pi and p1 is consid-
ered to be consistent with the geodesic distance, which will be dis-
cussed next. Note that we compare pi with its predecessors pi−1,
pi−2, and p1 because we detect landmarks in increasing order from
the landmark 1. Thus, for example pi−pi−2 in Eq. 7 is ignored for
landmark 2.

Since p is the same for the landmarks on the left and right sides,
Vi is also symmetrical in a mid-sagittal plane. To distinguish the
symmetrical landmarks, we consider an additional distance mea-
sure, which is the geodesic distance between the landmarks. The
geodesic distance is invariant to isometric deformation and thus
this feature is sensible to our purpose as changes in human poses
are considered to induce near isometric skin deformation. Similarly
to the relative distances in the local descriptor space, we consider
geodesic distances from a landmark i to i−1, i−2, and 1.

gi = (d(xi,x1), d(xi,xi−2), d(xi,xi−1))
>, (8)

where xi is a vertex in shape M that corresponds to a landmark i.
The geodesic distance between a and b is denoted by d(a,b).

Lastly, in order to differentiate the symmetrical landmarks in the
detection stage, we consider the geodesic distances between them.

u = (d(x1,x1′), . . . , d(xs,xs′))
>, (9)

where xi and xi′ are locations of the symmetrical landmarks. Fig-
ure 5 shows the geodesic distances between landmarks, and the val-
ues of the first three dimensions of p(xi) for each vertex xi.

Our method to define the spatial relationships between land-
marks is similar to the methods in [ASM06, WAS10, WSX11].
[ASM06] defines the spatial relationship in terms of Euclidean dis-
tance in R3 space, which is not invariant to rigid transformations or
pose changes. [WAS10, WSX11] use both the Euclidean distance
and the difference vector between local features in the descriptor
space. This choice is somewhat redundant because the difference
between two vectors contains the notion of distance already. Com-
pared with these approaches, our method uses two largely indepen-
dent components, the difference vectors in a local descriptor space
and geodesic distance, which makes more sense.
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Figure 5: The colors plotted on the body shape are the values of
vertices in the first three dimensions of the local descriptor space,
from the left to right. The values show a left-right symmetry even for
asymmetric poses. The black line represents the geodesic distances
between the closest landmarks i and i− 1 on the same side. The
blue line represents the geodesic distance between the symmetric
landmarks i and i′.

5. Regression for Locating Landmarks

The global and segmented body part shape descriptors, as well as
the pose invariant coordinates defined in the previous section are
used to locate landmarks. Our approach to this problem is to learn
a regression model between the two. After learning, the global and
body part shape descriptors for an input body shape allow us to
find suitable landmark coordinates, which are then used to locate
the landmark.

Since the shape descriptors and landmark coordinates are both
high dimensional and nonlinear, we use the kernel canonical corre-
lation analysis (KCCA) technique as a regression model. In KCCA-
based regression, the estimation of landmark coordinates is per-
formed using the connection parameter found in KCCA. That is,
when a new human shape is given, we perform the regression based
on learned connection parameter. Then, we can get the landmark
coordinates that consist of the position factor pi and the spatial re-
lationship factors Vi, gi (i = 1, . . . ,s), and u. Regression process is
performed respectively on the left and right sides.

5.1. Two-Level Nonlinear Correlation Analysis

Kernel CCA maps nonlinear variables to a feature space of a higher
dimension and examines the correlation between two variables in
that space. Our strategy is to perform KCCA for two types of data
pairs. One is between SBD and landmark positions in the local de-
scriptor space, and the other is between the global shape descriptor
and spatial relationships between landmarks. The former investi-
gates the relation between local features while the latter focuses on
the relation between the global features. The detailed procedure for
our KCCA is provided next.

5.1.1. Analysis on Position

Before performing the KCCA, we define a kernel function,
k(x,y) = φ(x)>φ(y), where φ is a projection mapping that trans-
forms x into a higher dimensional space. Our goal for each

landmark i, to find the connection between the SBDi that rep-
resents the body part shape and the landmark position in lo-
cal shape descriptor space. Given |Mtrain| pairs of training data
{SBDi , pi}

|Mtrain|
s=1 for each landmark i, we construct matrices Qi =

(SBD1
i , . . . ,SBD|Mtrain|

i ) and Ri = (p1
i , . . . ,p

|Mtrain|
i ) as data with each

column that correspond to each training data. Then, the kernel is
computed over Qi and Ri.

KQ,i = φ(Qi)
>

φ(Qi),

KR,i = φ(Ri)
>

φ(Ri).
(10)

According to [HSST04], the projection directions wQ,i and wR,i
for Qi and Ri satisfy wQ,i ∈ span(φ(Qi)) and wR,i ∈ span(φ(Ri)).
So we can represent a pair of directions as wQ,i = φ(Qi)αi and
wR,i = φ(Ri)βi, where αi and βi are weights. Therefore, we can
write the nonlinear version of CCA using the kernel functions as
follows:

max
αi,βi

ρ = max
αi,βi

α>i KQ,iKR,iβi√
α>i (KQ,i)2αiβ

>
i (KR,i)2βi

(11)

The solution to this correlation problem yields:

Ai = [α1
i , . . . ,α

t
i ], Bi = [β 1

i , . . . ,β
t
i ]

where {α j,β j}tj=1 are t pair directions corresponding to ρ1
i , . . . ,ρ

t
i

correlation values (see [HSST04] for the detailed solution). Let
proj(KQ,i) and proj(KR,i) be the projections of kernel KQ,i and
KR,i onto the projection matrices Ai and Bi:

proj(KQ,i) = KQ,iAi, proj(KR,i) = KR,iBi

Assume ρ1
i , . . . ,ρ

t
i is similar to 1. Then, we suppose that

proj(KQ,i) and proj(KR,i) are linearly correlated. Finally, we can
compute linear coefficient matrix Ci

PO such that

Ci
PO = proj(KQ)

> proj(KR). (12)

The above Ci
PO is for landmark i, so we perform KCCA for each

landmark and obtain C1
PO, . . . , Cs

PO.

5.1.2. Analysis on Spatial Relationships

Now we analyze the correlation between the full body shape
descriptor f(P) (Sec.4.1.2) and the spatial relationships V,
g, u. The analysis takes the same process as the one for
landmark coordinates. However, the only difference is that
KCCA is only performed twice here whereas the previous
analysis requires multiple KCCAs per landmark. Specifically,
given |Mtrain| pairs of training data {f(P)s,SPs}|Mtrain|

s=1 and

{f(P)s,us}|Mtrain|
s=1 , where SP= (V>1 ,g

>
1 , . . . ,V

>
s ,g>s )>, we construct

matrices Q = (f(P)1, . . . , f(P)|Mtrain|), R = (SP1, . . . ,SP|Mtrain|) and
U = (u1, . . . ,u|Mtrain|) as data. After the analysis we obtain the lin-
ear coefficient matrix CSP and CSM between the full body shape
descriptor f(P) and the spatial relationships.

5.2. Regression of Landmark Features

As the output of correlation analysis on the training data, we have
obtained the linear coefficients C1

PO, . . . , Cs
PO between the seg-

mented body part and landmark positions, and CSP, CSM between
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the full body descriptor and the spatial relationship between the
landmarks. For CPO and CSP, KCCA is performed on each of the
left and right sides, and thus 2(s+1) coefficients are obtained. To-
gether with a coefficient for CSM, the total number of coefficients is
2(s+1)+1. Now, given a new human model Mnew, we will predict
the landmark position (in a local shape descriptor space) and their
spatial relationships by regression using these coefficients. Simi-
larly to the analysis process, the regression is performed in two
stages.

Algorithm 1 shows the procedure for predicting landmark posi-
tions pnew

i for a new input shape Mnew. For each landmark, it first
computes SBDnew, and then kernel Knew

Q , which is projected to A
and multiplied with CPO to predict the projection of Knew

R (line
4). This regression is performed in the a high dimensional feature
space and not for the local shape descriptor space. The inverse map-
ping from KR to p is achieved by training a radial basis function
network (RBFN), which is a widely used model for function ap-
proximation.

Algorithm 1 Regression for Landmark Coordinates

Require: Ci
PO and Mnew

1: for all landmarks i = 1, . . . ,s do
2: compute SBDnew

i (Sec.4.1.3)
3: compute Knew

Q,i
4: proj(Knew

R,i )← Ci
PO proj(Knew

Q,i ) (Sec. 5.1.1)
5: pnew

i ← fRBFN(proj(Knew
R,i ))

6: return pnew
i

Regression for spatial relationships is performed in the same
manner, with SBDnew replaced with f(Pnew), and Ci

PO with CSP
and CSM.

Through the regression procedure, we have obtained the
landmark positions in the local shape descriptor space
pnew

1 , . . . ,pnew
s and the spatial relationships between the land-

marks {Vnew
i ,gnew

i }s
i=1, unew. We additionally have obtained

pnew
1′ , . . . ,pnew

s′ and {Vnew
i′ ,gnew

i′ }
s′
i′=1 for other side of the body. All

of them will be used to detect landmark vertices as explained next.

6. Landmark Detection

We detect vertices xi and xi′ simultaneously for the landmarks i and
i′ by solving the optimization problem:

argmin
xi∈Xi

||pnew
i −p(xi)||2 subject to

||gnew
i −g(xi)||2w ≤ εgeo, ||Vnew

i −V(xi)||2w ≤ εvec,

||unew
i −ui(xi,xi′)||2w ≤ εsym,

(13)

where Xi is a set of vertices in the segmented body part correspond-
ing to the landmark i, and εgeo, εvec and εsym are thresholds. ui de-
notes a i’s element of u (Eq. 9). The weighted Euclidean distance
||·, ·||2w is computed as

||Vnew−V(x)||2w = ∑
i

wi ||vnew
i −vi(x)||2 , (14)

where ∑i wi = 1 and vi(x) denote a column vector of V (Eq. 7).
The weights wi are set higher for a closer landmark as it has higher
correlation than more distant landmarks.

The detection procedure consists of two steps. We first collect
the segmented body part vertex set Xi that corresponds to the land-
mark i, and then find the landmark vertex from Xi. The pseudocode
for constructing Xi is provided in Algorithm 2. Note that the seg-
mented body part function z∗i is used to check whether a vertex x is
to be included in Xi or not (line 4).

Algorithm 2 Collecting vertices contained in segmented body part
Require: Mnew and z∗i (Sec.4.1.3)

1: Compute p(Mnew)
2: Xi← /0
3: for all vertices x included in Mnew do
4: if

∣∣∣∣z∗i (p(x))∣∣∣∣> 0 then
5: Xi←{x}∪Xi
6: return Xi

The segmented body part Xi obtained in Algorithm 2 signifi-
cantly reduces the number of candidate vertices for finding a land-
mark. In addition, it increases the detection accuracy by precluding
vertices in unrelated body parts. After having found Xi, Eq. 13 is
solved to find the position of a landmark. Specifically, we compute
p(xi) for all xi ∈Xi and find a vertex that satisfies the constraints in
the increasing order of ||pnew

i −p(xi)||.

Detection for other side of the landmark is performed in the same
manner, with the index i being replaced with i′. Once this detection
procedure is completed, landmarks i and i′ are identified.

Detecting the First Landmark Landmarks are found in the in-
creasing order from (1, 1′) to (s, s′) by solving Eq. 13. When finding
the first landmark (proximal phalanges), we solve Eq. 13 using only
symmetry constraint term since we cannot use the spatial relations.
However, finding a landmark only with p does not differentiate be-
tween the left and right sides. Thus, for the first landmark only, our
system visualizes a total of 30 candidate landmarks, from which
a user selects one from the right side. The locations of candidate
landmarks are typically very concentrated. Thus, a user is practi-
cally required to select either a left or right side. All the subsequent
landmarks are then found in a fully automatic manner.

7. Experiment

Our data set includes 400 dynamic human models from 20 male and
20 female subjects, each making 10 poses. Each model consists of
nearly 15K vertices. We constructed a training data set of 160 mod-
els by randomly selecting four poses from each subject. After that,
we manually marked seven landmarks (i.e., proximal phalanges, ra-
diale, acromiale, iliocristale, trochanterion, patella, calcaneus and
hallux) on both sides of the human body. We created a test data
set with 210 poses by selecting a pose randomly from each subject
from the remaining 240 models.

Finding landmarks from the data set is very challenging since
human models have a variety of shapes and some of the landmarks
are difficult to find, even with the human eye. In addition, since
the data sets include dynamic poses, the positions of the landmarks
vary significantly.

All parameters of our approach were obtained through a stan-
dard 10-fold cross validation procedure. When calculating the S-
BoF in the preprocess stage, all the parameter values are the same
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as in [LBBC14]. The difference is that we used a higher resolution
data, so the dictionary size v is 64 and λ is 0.25. In the learning
and regression stages, the kernel function used in the KCCA was a
Gaussian kernel, whose width was set to the maximum of the Eu-
clidean distances of input variables among all the training data set.
Lastly, the thresholds εgeo, εsym and εvec were set to 7, 7 and 0.09,
respectively after some experiments. The weights w1, w2, and w3
representing the degree of influence depending on the spatial rela-
tionship between landmarks were set to 0.25, 0.25, and 0.5 respec-
tively.

We applied our method to 210 test human models. Figure 6
shows the results of the located landmarks for dynamic poses of
a variety of human models. One can see that our method estimates
landmark positions with reasonably good accuracy. For each land-
mark, the difference between the ground truth and the predicted
landmarks was calculated using both geodesic and Euclidean dis-
tances.

Table 1: Average, standard deviation, and median of geodesic (left)
and Euclidean (right) distances between the estimated landmarks
and the ground truth data.

Landmark mean(mm) st.dev.(mm) median(mm)
R. proximal phalanges 51.66 39.66 26.36 17.44 51.58 41.05
L. proximal phalanges 61.51 50.22 23.54 15.06 58.85 51.65

R. radiale 71.15 58.75 39.67 24.58 68.31 61.85
L. radiale 64.75 56.17 37.49 26.47 62.29 58.19

R. acromiale 66.76 62.43 37.79 33.66 62.86 59.99
L. acromiale 71.21 65.57 48.99 42.09 56.76 53.96
R. iliocristale 68.61 57.51 60.35 28.42 54.74 52.74
L. iliocristale 51.74 49.70 31.79 30.38 45.82 44.43

R. trochanterion 58.21 55.75 36.44 34.86 50.06 48.27
L. trochanterion 53.18 50.86 30.80 29.26 46.20 44.30

R. patella 86.48 77.29 51.95 42.89 85.00 78.53
L. patella 90.06 81.57 43.58 36.82 87.41 82.83

R. calcaneus 32.85 30.09 14.20 12.53 30.61 29.01
L. calcaneus 24.78 23.05 12.35 11.03 23.18 21.74

R. hallux 16.06 14.15 10.06 8.58 13.36 11.85
L. hallux 16.82 15.26 14.19 12.80 12.45 11.09

Table 1 shows the average, standard deviation, and median of
distance errors for each landmark. The average error of all land-
marks is less than 9cm in geodesic distance and 8.2cm in Euclidean
distance. Overall, our method is mostly superior with respect to
performance and computation time to [WSX11] that share a sim-
ilar purpose with our paper although [WSX11] tested against less
challenging landmarks for less varying poses (See Fig. 8)†. Fig-
ure 7 compares the accuracy of [WSX11] and ours in terms of the
errors in the Euclidean distance. Our method marks lower error for
radiale, acromiale, and patella while [WSX11] is better for proxi-
mal phalanges and hallux. Compared with other landmarks, in our
database, the local areas near proximal phalanges and hallux are
rugged and show high variedness caused by the mesh reconstruc-
tion of thin parts (See Fig. 9). This is in contrast with the data
of [WSX11] in which the reconstructed meshes are smoother in
these areas. We conjecture that the different complexities of the
data might have caused our accuracy for these landmarks to be
lower than that of [WSX11].

† Note that we cannot make exact comparison with ours and [WSX11]
because the landmarks and the complexities of the human models in the
tested databases differ. We made a rough comparison with respect to twelve
landmarks (proximal phalanges, radiale, acromiale, patella, calcaneus, and
hallux) that overlapped with our landmarks.

Computation Time. The method was implemented in MATLAB.
For 40 test human models, it took approximately 6 hours to com-
plete the preprocess stage with the majority of time spent for learn-
ing a supervised bag of features, 0.9 seconds for KCCA learning,
0.2 seconds for regression, and 7099 seconds for landmark detec-
tion using 2.6 GHZ Intel Core i7 CPU and 16GB 2133MHz mem-
ory Mac. The online learning, regression, and detection stages were
performed reasonably fast; it took 33.3 seconds per human model
for 16 landmarks. [WSX11] takes about three minutes per human
model to detect 6 landmarks.

8. Conclusion and Future Work

In this paper, we introduced novel methods for landmark detection
using BoF and KCCA. The main contributions of our work are the
segmented body part descriptor using geometric dictionary, and the
pose invariant landmark coordinates combining the landmark po-
sition in the local descriptor space with the spatial relationships
between landmarks. Our method allows for efficient detection of
landmarks independently of alignment, vertex ordering, and pose
changes.

Our method has several limitations in the following aspects.
First, it detects landmarks in a sequential manner. This strategy
allows faster performance than finding all the landmarks at once,
but may have negative effects on the accuracy because errors can
accumulate in detecting the latter part of landmarks. Second, our
assumption on the isometry of human deformation is not perfectly
valid. Human body deformation is largely isometric, but our exam-
ination on the real human scan data shows that the degree of non-
isometry is not negligible. This non-isometric deformation induced
in pose changes degrades the accuracy of predicting geodesic dis-
tances between landmarks. Developing appropriate methods that
overcome this error would require investigating the features of
which behaviors can be accurately predicted from dynamic poses.
If we find this feature, our approach will have a much higher ac-
curacy and may be completely automatic. This remains our future
research goal.

There are many additional future research directions. While we
only deal with the landmarks that are located on the surface, our
method can be used for the regression of points inside the body as
well. A good application would be to predict the locations of joints
from the body shape, e.g., for skinning purposes [BCBiR∗15]. In
addition, our landmark detection method can be used for various
applications, such as global shape alignment that can be performed
around the detected landmarks, as well as registration and one-to-
one correspondence detection using the matched landmarks. Lastly,
it may help subject-specific simulation [KPMP∗17] through finding
joint positions through regression.
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Figure 6: Results of landmark detection on 16 subject human models (8 female and 8 male) with dynamic poses. Red markers are ground
truth landmarks annotated manually and green markers are estimated landmarks using our method.
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