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Fig. 1. Our motion style transfer results on two motion clips, jumping and fast walking, with three random
latent variables (z1,2,3), without using style reference motions.

This paper presents a novel deep learning-based framework for translating a motion into various styles within
multiple domains. Our framework is a single set of generative adversarial networks that learns stylistic features
from a collection of unpaired motion clips with style labels to support mapping between multiple style domains.
We construct a spatio-temporal graph to model a motion sequence and employ the spatial-temporal graph
convolution networks (ST-GCN) to extract stylistic properties along spatial and temporal dimensions. Through
spatial-temporal modeling, our framework shows improved style translation results between significantly
different actions and on a long motion sequence containing multiple actions. In addition, we first develop
a mapping network for motion stylization that maps a random noise to style, which allows for generating
diverse stylization results without using reference motions. Through various experiments, we demonstrate the
ability of our method to generate improved results in terms of visual quality, stylistic diversity, and content
preservation.
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1 INTRODUCTION
The motion style, the way movement is performed, is an essential component of motion as it
reflects various attributes of characters such as mood, personality, or identity. The motion style
is an essential element to realize life-like virtual characters and enrich storytelling in computer
animation.

However, acquiring stylized motions is very challenging since capturing movements with all the
necessary content and style is an expensive and time-consuming process. Due to the lack of suitable
motion stylization tools, creating a single avatar motion from a motion capture database requires
additional work by professional artists to add the motion style manually. As one solution to reduce
this workload, motion style transfer aims to extract the target style from a motion example and
transfer it to another motion with the desired content.

Motion styles reflect various attributes somewhat ambiguously and are challenging to formulate
accurately. Thus, many previous studies relied on the data-driven approaches for inferring motion
style, for which researchers have achieved remarkable progress [Aberman et al. 2020; Aristidou et al.
2017; Du et al. 2019; Min et al. 2010; Smith et al. 2019; Xia et al. 2015; Yumer and Mitra 2016]. One
primary focus in motion stylization is designing deep neural networks [Aberman et al. 2020; Chan
and Ho 2021; Dong et al. 2020; Du et al. 2019; Holden et al. 2016]. The most recent work of Aberman
et al. [2020] proposed a generative adversarial networks (GAN) based architecture augmented
with the adaptive instance normalization (AdaIN) that learns to generate multiple styles from an
unpaired motion collection. In this paper, following the same approach, we propose a significantly
improved deep learning architecture for the two limitations of the previous work: First, deep
neural network-based models using 1D convolution do not consider the spatial relations between
joints, and thus may fail to preserve motion content when transferring style between significantly
different action types, e.g., neutral-punching and proud-jumping, and when translating the style
into long-term motions that include multiple action types. Secondly, previous methods can encode
the style only from an example motion, which may be impractical in the real-world application.
Since the style is highly variable depending on the motion content, e.g., childlike-punching vs.
childlike-walking, it is not always feasible to have a representative motion for a particular style. In
addition, style encoding through motion is inefficient in the case of generating diverse stylized
output for a specific style. In practical applications, it would be easier for the user to explore the
learned style space and control the style using latent variables than to find a relevant reference
motion.
In this paper, we present a new deep learning framework to tackle the above limitations. To

overcome the problem of 1D convolution on motion, we construct a spatio-temporal graph to model
a motion sequence and employ the spatial-temporal graph convolution networks (ST-GCN) [Yan
et al. 2018] to extract high-level stylistic properties along both spatial and temporal dimensions. To
allow for the diverse stylization of a source motion without using reference motions, we develop a
mapping network that generates the style code from random noise. These technical features have
not been introduced to the motion style transfer problem before. Our framework learns stylistic
features from a collection of unpaired motion clips with style labels while supporting the mapping
between multiple style domains. Specifically, we adopt a multi-task learning approach [Choi et al.
2020] to make our network architecture scalable to the increasing number of domains.
The domain in this context refers to a set of motions that can be grouped by a particular style,

e.g., old or childlike, that is distinguished from the motion content, which refers to the nature of
action itself, such as walking or jumping. We assume that the motion content provides critical
semantic information about an action type, such as phase and foot contact timing.
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Figure 1 shows that our method translates jumping and fast walking motions into two style
domains, depressed and proud, creating diversely styled motions with three random latent variables.
The contributions of our work can be summarized as follows:

• Through spatio-temporal modeling using GCN, our framework shows improved style transla-
tion results between significantly different actions and on a long motion sequence containing
multiple actions in terms of visual quality and content preservation.

• For the motion style translation task, we develop a network that maps a random noise to
style, allowing diverse stylization results to be generated without using reference motion.

We show the effectiveness of our method with respect to the quality of transfer into multiple
style domains, diversity of stylization with random noises, and the interpolation of styles. We also
present comparisons with previous work in terms of the naturalness and the degree of content
preservation of the stylized motions.

2 RELATEDWORK
In this section, we focus on discussing the data-driven methods for motion style transfer. We also
introduce important studies on the image stylization that greatly contributed to the motion style
problem.

2.1 Image Style Transfer
Image style transfer aims to learn the mapping from an image of a source style domain to an image
of a target domain. Gatys et al. [2016] proposed an impressive method that transfers style between
images by matching feature statistics in convolutional layers. Subsequently, Li et al. [2017] and
Ulyanov et al. [2017] improved the quality of image stylization significantly by introducing an
instance normalization (IN) technique. They showed that matching a number of statistics, such
as channel-wise mean and variance, is efficient for the style transfer. Noting that the instance
normalization performs a form of style normalization by normalizing feature statistics, Huang
et al. [2017] extended IN to the adaptive instance normalization (AdaIN). AdaIN injects style
information into content input by adjusting the mean and variance of the style input. Many recent
studies successfully used the AdaIN in the generative model for the image stylization [Baek et al.
2020; Choi et al. 2020; Huang et al. 2018; Liu et al. 2019].

To address the style diversity, Huang et al. [2018] and Lee et al. [2018] proposed to map images
onto two disentangled content and style spaces. The code from the content space encodes a domain-
invariant feature extracting shared information across domains, and the style code encodes a
domain-specific attribute feature. This disentanglement of features greatly reduces mode collapse
and improves the quality of translated images. However, these methods are not scalable to an
increasing number of domains since they only consider a mapping between two domains.
To solve this scalability problem, a body of work [Choi et al. 2020; Donahue and Simonyan

2019; Isola et al. 2017; Lee et al. 2020; Liu et al. 2019] extended the unsupervised image-to-image
translation to handle multi-modal translation. Choi et al. [2020] proposed a scalable approach
that can generate diverse images across multiple domains. Their encoding network has multiple
output branches, each of which extracts style codes for a specific domain. They also introduced a
mapping network that learns to transform a random Gaussian noise into a style code to diversify
the generated images. Our approach is similar to [Choi et al. 2020] in that it maps a random noise
to style to obtain style diversities and that the training dataset consists of multiple classes.
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2.2 Motion Style Transfer
Various data-driven approaches have been developed for motion style research. Hsu et al. [2005]
used a linear time-invariant system to model the difference between two motions with different
styles and applied the extracted style to a new motion. This method is effective only to a set
of aligned, similar motions. Ikemoto et al. [2009] used Gaussian process models of kinematics
and dynamics to edit the input motion into the desired style. Taylor and Hinton [2009] used the
conditional restricted Boltzmann machine (CRBM) to model the human motion condtioned on style.
Xia et al. [2015] presented an online learning algorithm using KNN search to construct a series
of local mixtures of auto-regressive models (MAR) for capturing relationships between motion
styles. The constructed model enables transferring styles between various motion clips. Yumer and
Mitra [2016] extracted spectral intensity features between similar actions with different styles and
transferred them to a new motion to control styles. These studies require preprocessing of motion,
e.g., alignment and database searching, to model the difference between a motion pair or to model
a style feature and apply it to a new motion. Thus, they are effective for the range of motions in
the database but may not scale well to unseen data.
Recently, deep learning-based approaches have greatly improved the quality and the possible

range of motion stylization. Holden et al. [2017; 2016] applied the Gram matrix method [Gatys
et al. 2015] to transfer motion style through motion editing in the latent space. Du et al. [2019]
proposed a conditional variational autoencoder (CVAE) to learn the distribution of style motion
conditioned by the Gram matrix-based style features. These approaches require much computing
time on the test set to extract style features through a slow optimization process and tend to fail
to transfer style between significantly different motions. Smith et al. [2019] presented a fast and
simple network architecture that generates stylized motions in real-time. During the training time,
it requires the preprocessing of frame-by-frame spatial matching between motion data. Mason
et al. [2018] proposed a motion controller that learns to synthesize stylized motions with only a
limited amount of motion data via few-shot learning. Yet, similarly to [Du et al. 2019], this approach
is also limited to certain motion types, such as locomotion.
The work of [Aberman et al. 2020] alleviates the restrictions on training data by allowing for

training the networks with an unpaired dataset with style labels. It, also notably, can transfer style
from videos to 3D animations by learning a common style embedding for both 3D and 2D joint
positions.

The deep learning approaches above learn only one style code for each style domain and transfer
it into the content motion. However, there are countless style variations even in the same style class.
Our framework allows for creating diverse stylized results within the same style class through
mapping a random noise to style. In addition, previous methods model the human motion as the
temporal changes of all joints, overlooking the spatial structure of human skeleton. In contrast, our
framework considers the spatial relationship between joints by using ST-GCN [Yan et al. 2018] to
improve the quality of the stylized motions.

3 OVERVIEW
We develop a GAN-based framework that translates a motion into multiple style domains. The
overall pipeline of our framework is shown in Figure 2. Given an input motion sequence, the
motion stylizer 𝐺 learns to transform the motion into the target style using a domain-specific
style code, which represents diverse styles found in a particular domain. Similar to the previous
study [Aberman et al. 2020], we design the style encoder 𝐸 to extract the style code from the given
reference motion. Further, we train the mapping network 𝐹 that allows for a more detailed stylistic
control by generating diverse style codes for a given domain label and a random Gaussian noise,
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Fig. 2. The overall pipeline of our framework. Given a source motion, the motion stylizer 𝐺 transforms the
motion into the target style using a domain-specific style code, which is created either by the style encoder 𝐸
or the mapping network 𝐹 . 𝐸 extracts the target style code from the given reference motion, while 𝐹 maps the
random noise into the style code, allowing for a more detailed stylistic control given a domain label, without
requiring any reference motions.

without requiring any reference motions. As an adversarial architecture to 𝐺 , the discriminator
𝐷 learns to classify motion examples as real (from the domains) or fake (generated ones) with
respect to the given style domain label. We use the spatio-temporal graph convolutional networks
(ST-GCN) as a basis of our network to integrate the spatial and temporal information of complex
human motion.
After describing the process for converting the motion clip into the suitable format for our

graph-based deep learning algorithm (Sec. 4), we summarize the ST-GCN used in our architecture
(Sec. 5). In the following, we explain the four main network components of our architecture and
the training process (Sec. 6).

4 MOTION DATA PREPARATION
Dataset. We use motion capture databases acquired from the previous motion style transfer

studies [Aberman et al. 2020; Xia et al. 2015]. We divide the databases intoM𝐴 (homogeneous) and
M𝐵 (heterogeneous) datasets based on the content-homogeneity of the motion, i.e., the former
has a single content in a single motion sequence while the latter contains multiple contents. The
motion datasets are unpaired but grouped by multiple style domains. We train our networks with
M𝐴 and useM𝐵 as the test data to evaluate whether our method can be extended to previously
unseen, long-term motion sequences that consist of various contents.

Preprocessing. The collected motion data is converted into an appropriate format for training
using the preprocessing scheme in [Holden et al. 2016]. We first retarget the motion data into a
single CMU skeletal system with 𝑁 = 21 joints. Then, the size of the dataset is doubled by mirroring
the original motion clips. While the motion data can vary in frame rate and duration at test time, the
motion data at training time is sub-sampled into half of the original frame rate (60 fps) and is sliced
into 𝑇 = 64 frame clips with 𝑇 /2 frames overlapping with adjacent clips. Motion clips less than 𝑇
frames are padded with the first and the last frames. For our neural system to be stably trained, we
scale the motion data by subtracting the mean pose and dividing by the standard deviation.
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Motion data representation. Themotion sequence can be represented asm = [𝑣1,𝑖 , ..., 𝑣𝑡,𝑖 , ..., 𝑣𝑇,𝑖 ]𝑁𝑖=1.
The pose vector of the 𝑖-th joint at the 𝑡-th time stamp is 𝑣𝑡,𝑖 = [ 𝑗𝑝

𝑡,𝑖
, 𝑗𝑟𝑡,𝑖 ], where 𝑗𝑝 ∈ R3 and 𝑗𝑟 ∈ R4

are the joint position and joint rotation (unit quaternion) relative to the reference frame, which is
the root transformation projected onto the ground. Thus, we represent the input motion data as
m ∈ R𝑇×𝑁×𝑑 , where 𝑑 = 7 is the number of feature dimensions.

Motion graph construction. In this work, we assume that the motion data can be structured as a
spatio-temporal graph. Joint nodes within a frame are connected by the spatial edges according to
the bone connections 𝐻 . We represent this intra-body structure with G𝑠 = (V𝑠 , E𝑠 ) whereV𝑠 is a
spatial joint set with |V𝑠 | = 𝑁 and E𝑠 = {𝑣𝑡,𝑖𝑣𝑡, 𝑗 | (𝑖, 𝑗) ∈ 𝐻 } is a spatial edge set, which reflects the
spatial connectivity of each column in m. On the other hand, the temporal edge links the same
joint in the adjacent frames. We represent this inter-frame structure G𝑡 = (V𝑡 , E𝑡 ) whereV𝑡 is a
temporal joint set with |V𝑡 | = 𝑇 and E𝑡 = {𝑣𝑡,𝑖𝑣 (𝑡+1),𝑖 } is a temporal edge set, which reflects the
temporal connectivity of each row in m. Finally, the spatio-temporal graph on a motion sequence
can be represented as a unified graph G = (V, E) with |V| = 𝑁𝑇 , allowing us to process data
jointly across space and time.

5 GRAPH CONVOLUTIONAL NETWORKS
To encode high-level features from the spatio-temporal graph, ST-GCN [Yan et al. 2018] is used in
our framework. Here we summarize the ST-GCN implementation in our architecture. Please refer
to [Yan et al. 2018] for the detail of the ST-GCN.

5.1 Spatial Graph Convolution
We first explain the spatial graph convolution on motion data at one frame. GCN can be viewed as
a generalization of CNN with no canonical spatial representation. We represent the spatial graph
convolution as:

𝑓𝑜𝑢𝑡 (𝑣𝑡𝑖 ) =
∑

𝑣𝑡 𝑗 ∈𝐵 (𝑣𝑡𝑖 )

1
𝑍𝑡𝑖 (𝑣𝑡 𝑗 )

𝑓𝑖𝑛 (𝑣𝑡 𝑗 ) ·w(𝑙𝑡𝑖 (𝑣𝑡 𝑗 )), (1)

where 𝑓𝑖𝑛 (𝑣) and 𝑓𝑜𝑢𝑡 (𝑣) are input and output feature maps of a graph node 𝑣 . The neighbor set 𝐵
of 𝑣𝑡𝑖 is a set of nodes 𝑣𝑡 𝑗 that are within 𝐷 edge hops, i.e., 𝐵(𝑣𝑡𝑖 ) = {𝑣𝑡 𝑗 | 𝑑 (𝑣𝑡𝑖 , 𝑣𝑡 𝑗 ) ≤ 𝐷}, where
𝑑 (𝑣𝑡𝑖 , 𝑣𝑡 𝑗 ) is the minimum number of edge hops from 𝑣𝑡𝑖 to 𝑣𝑡 𝑗 . We only take into account neighbors
in 1-hop (i.e., 𝐷=1). 𝐵(𝑣𝑡𝑖 ) is further partitioned into a fixed number of subsets with numeric labels
by a mapping 𝑙𝑡𝑖 : 𝐵(𝑣𝑡𝑖 ) → {0, 1, 2}. The joint nodes are labeled as 0 for 𝑣𝑡𝑖 , 1 if closer to the root
than 𝑣𝑡𝑖 , and 2 otherwise. The weight function w is implemented as w(𝑙𝑡𝑖 (𝑣𝑡 𝑗 )) to apply the same
weight to the nodes with the same label. The normalizing term 𝑍𝑡𝑖 (𝑣𝑡 𝑗 ) = |{𝑣𝑡𝑘 |𝑙𝑡𝑖 (𝑣𝑡𝑘 ) = 𝑙𝑡𝑖 (𝑣𝑡 𝑗 )}|
is the cardinality of each subset that 𝑣𝑡𝑘 belongs to.
After completing the spatial convolution according to the above equation, we proceed with

the temporal convolution over the time axis. Since input vectors on the time axis are aligned in
chronological order, we continue the temporal convolution in accordance with the temporal locality.

5.2 Graph Pooling and Unpooling
We use the average pooling operation to reduce the output dimensionality after convolutional
layers. Since the temporal dimension of the graph is uniformly structured with vertices sequentially
connected along time, the traditional average pooling method can be used. In contrast, as its
spatial dimension is non-uniformly structured, we consider the spatial pooling operation as the
hierarchical graph clustering, i.e., from the finer graph into the sparser graph. At each downsampling
step, we average the consecutive joint nodes only within the local body part (cluster) in order
to create a coarser-grained hierarchical graph structure, as illustrated in Figure 3. As a result of
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Fig. 3. Illustration of the spatio-temporal graph topology obtained by pooling and unpooling. The consecutive
joint nodes within the local body part are averaged via pooling to create a coarser-grained hierarchical graph
structure. The averaged nodes are mapped back to the previous skeleton structure via unpooling.

pooling, our framework uses graphs G𝑖 = (V𝑖 , E𝑖 ) in varying resolutions. Specifically, |V1 | = 𝑁𝑇 ,
|V2 | = 𝑁 /2 ×𝑇 /2, and |V3 | = 𝑁 /4 ×𝑇 /4.
Upsampling takes place in the opposite direction of the downsampling. The linear interpolation

is used for upscaling the temporal resolution of data. The spatial unpooling upscales the joint
dimension by mapping the pooled nodes to the previous skeleton structure.

6 MOTION STYLE TRANSFER FRAMEWORK
In this section, we describe the network components of our framework. During training, we
arbitrarily sample a source motion m ∈ M𝐴 within the source domain 𝑦, a reference motion
m ∈ M𝐴 within the target domain 𝑦, and a latent code z ∈ Z.

6.1 Architecture
Motion Stylizer. Motion Stylizer 𝐺 is an encoder-decoder architecture, which transfers a motion

from one style domain to another. We provide the encoder with an input motion m and then
feed its output to the decoder along with a style code. The encoder 𝐺𝑒𝑛𝑐 consists of two ST-GCN
residual blocks, each accompanied by the instance normalization (IN) layer [Wang et al. 2019]. In
the encoding process, IN removes the style variation in motion by normalizing the feature statistics
across each channel in each training example. As a result, we obtain an output feature map ℎ, which
is normalized with respect to style, thus containing only the domain-invariant information. The
encoding process can be written as:

ℎ = 𝐺𝑒𝑛𝑐 (m) (2)
The decoder 𝐺𝑑𝑒𝑐 is a network composed of two ST-GCN residual blocks, which transform the

intermediate feature map ℎ into the output motion m̂ using the target style code ŝ.
m̂ = 𝐺𝑑𝑒𝑐 (ℎ, ŝ) (3)

The output motion is required to satisfy two essential properties. Firstly, it should reveal distinct
style differences as ŝ varies. Secondly, it should always preserve the content of the original motion,
regardless of ŝ. Keeping these aspects in mind, we employ an adaptive instance normalization
(AdaIN) [Huang and Belongie 2017] and a skip architecture. AdaIN, in particular, is key to a
successful style deformation. This normalization technique injects a style to the input by adjusting
the feature statistics as:

𝐴𝑑𝑎𝐼𝑁 (m, ŝ) = 𝜇 (ŝ)
(
m − 𝜎 (m)
𝜇 (m)

)
+ 𝜎 (ŝ) (4)

where 𝜎 and 𝜇 represent the channel-wise mean and variance, respectively. AdaIN adaptively
normalizes the source motion m to the corresponding style ŝ, which helps characterize the output
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motion m̂ according to the domain-specific information. The skip connections are used to take
advantage of the early layers rich in spatial details. We observed that the skip architecture helps
convey the semantic, contextual information of motion during decoding and thus preserve the
essential content of the original motion.

Style encoder. Style Encoder 𝐸 takes a reference motion m with its domain label 𝑦 as input.

ŝ = 𝐸𝑦 (m) (5)

We use the multi-task learning (MTL) approach, which allows 𝐸 to extract a per-domain style code.
Our style encoder is composed of two ST-GCN blocks with an MLP for multiple output branches.
The ST-GCN blocks are a shared component that extracts shared features across all domains. We
use a separate fully-connected layer for each branch to obtain domain-specific information from
the shared features.

Mapping network. In addition to Style Encoder, we also create Mapping Network 𝐹 that generates
a style code ŝ from a random latent vector z, conditioning on a domain label 𝑦:

ŝ = 𝐹 (z | 𝑦). (6)

Mapping Network 𝐹 allows us to stylize a source motion without using a reference motion. We
sample z from the standard Gaussian distribution, with zero mean and unit variance. Our mapping
network is comprised of four fully-connected layers, where the domain label is one-hot encoded
and concatenated with the latent vector. The size of the domain label vector is the same as the
number of domains via one-hot encoding. 𝐹 can generate diverse style codes by varying the latent
vector. The conditional setup enables 𝐹 to learn style representations for all domains effectively.

Style discriminator. Our discriminator 𝐷 learns to discriminate multiple styles. Its network
components consist of an ST-GCN-based shared architecture with multiple linear output branches.
Each domain-specific branch 𝐷𝑦 outputs a binary value depending on whether an input motion is
a real motion from the domain 𝑦 or a fake one synthesized by 𝐺 .

The detailed structure and implementation of our network architecture are presented in Appendix
A.

6.2 Training Objectives
Our networks are trained by minimizing the following loss functions.

Adversarial loss. The motion stylizer 𝐺 is trained to synthesize a motion m̂ = 𝐺 (m, ŝ) while the
discriminator 𝐷 is trained to distinguish real motions from the synthesized ones by optimizing the
following loss function:

L𝑎𝑑𝑣 = Em,𝑦

[
log 𝐷𝑦 (m)

]
+ Em,𝑦,z

[
log (1 − 𝐷𝑦 (m̂))

]
(7)

With this adversarial loss, we penalize 𝐷 for misclassifying fake examples of 𝐺 and 𝐺 for failing to
fool 𝐷 . Meantime, 𝐹 learns to map z to ŝ that corresponds to the domain 𝑦, and 𝐸 learns to encode
the style of m into ŝ.

Cycle consistency loss. We enforce 𝐺 to preserve the semantic consistency by applying the cycle
consistency loss L𝑐𝑦𝑐 [Zhu et al. 2017]. The cyclic loss encourages𝐺 to remap the output motion
m̂ to the source motion m using the estimated style code s = 𝐸𝑦 (m). This loss function allows the
model to reliably transform the motion style while maintaining the domain-invariant characteristics
of m.

L𝑐𝑦𝑐 = Em,𝑦,𝑦,z
[
∥m −𝐺 (m̂, s)∥2

]
(8)
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Identity loss. We define an additional loss function that encourages identity mapping of𝐺 through
Equation 9. Given an input motion with its style s, this loss function ensures that 𝐺 produces the
identical motion to the original.

L𝑖𝑑 = Em,𝑦

[
∥m −𝐺 (m, s)∥2

]
(9)

Style reconstruction loss. The network 𝐺 learns to utilize ŝ for style deformation by the style
reconstruction loss (Equation 10). This loss function guarantees that the target style is reconstructed
from the stylized output m̂. Thereby, 𝐺 learns to transform the input motion while reflecting the
stylistic details in the reference motion.

L𝑠𝑡𝑦 = Em,𝑦,z
[ 

 ŝ − 𝐸𝑦 (m̂))




1
]

(10)

Diversity-sensitive loss. In this work, we use a diversity-sensitive loss [Yang et al. 2019] to avoid
the mode collapsing problem, in which the generator produces a deterministic output (i.e., single
mode). We regularize the generator to address this problem by maximizing the following loss term:

L𝑑𝑠 = Em,𝑦,z1,z2
[
∥ 𝐺 (m, ŝ1) −𝐺 (m, ŝ2) ∥1

]
(11)

where ŝ1 and ŝ2 are two different style codes generated by 𝐹 using z1, z2 ∈ Z or 𝐸 using m1,m2 ∈
M𝐴. With this loss term, we enforce 𝐺 to generate diverse outputs as the style code varies.

Full loss function. Finally, we perform the following optimization with the above loss functions:
𝑚𝑖𝑛
𝐺,𝐹,𝐸

𝑚𝑎𝑥
𝐷

L = 𝜆𝑎𝑑𝑣 L𝑎𝑑𝑣 + 𝜆𝑐𝑦𝑐 L𝑐𝑦𝑐 + 𝜆𝑖𝑑 L𝑖𝑑 + 𝜆𝑠𝑡𝑦 L𝑠𝑡𝑦 − 𝜆𝑑𝑠 L𝑑𝑠 (12)

where 𝜆𝑎𝑑𝑣, 𝜆𝑐𝑦𝑐 , 𝜆𝑖𝑑 , 𝜆𝑠𝑡𝑦 , and 𝜆𝑑𝑠 are weight parameters for each term.

7 EXPERIMENTS AND EVALUATION
This section presents various experiments to evaluate its performance. All experiments are con-
ducted with unseen examples during the training and evaluated on eight distinctive styles: neutral,
angry, depressed, childlike, old, proud, sexy, and strutting. While the length of input motion is fixed
to 64 frames during the training phase, it can vary during the test phase as it is allowed by our
convolutional network-based architecture.

Metrics. Two metrics are used for ablation analysis and quantitative evaluation; Fréchet Motion
Distance (FMD) and recognition accuracy. The FMD is a variant of the Fréchet Inception Distance
(FID) [Heusel et al. 2017] that is used to evaluate the fidelity and diversity of image generative
models. The FID is calculated as the distance between the two feature distributions of real and fake
images, which are extracted from Inception v3 network [Szegedy et al. 2016] trained on ImageNet
[Russakovsky et al. 2015]. However, since there is no standard feature extractor for motion, we
train an action classifier [Yan et al. 2018] instead to classify the motion content and calculate the
FMD between the real and generated motion samples from the feature vectors that are extracted
from its final pooling layer. A lower FMD indicates better performance in terms of generation
quality.

In addition, the same action classifier is used to measure the recognition accuracy on generated
samples under an assumption that a model with a higher degree of content preservation generates
more results that are correctly classified as the content of source motion by the action classifier.
The higher accuracy means better performance in terms of content preservation.

In the test, we divide M𝐴 into two halves, M𝑔𝑒𝑛 for generation and M𝑐𝑙𝑠 for classification.
We train the model withM𝑔𝑒𝑛 and the action classifier withM𝑐𝑙𝑠 on six content types: walking,
running, jumping, kicking, punching and transitions. The action classifier shows 94.28% accuracy on
M𝑔𝑒𝑛 . We validate the classifier for each stylized set made by the trained models.
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Childlike – runningDepressed – normal walking Old – jumping Strutting - kicking

Neutral – fast walking

Source

R
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Fig. 4. Transferring styles of various reference motions to neutral-fast walking motion.

All results are presented after post-processing by the same scheme used in [Aberman et al. 2020]
including foot-sliding removal. In the figures, the source motion is shown with a blue skeleton,
the reference motion with a yellow skeleton, and the resulting motion in pink. While our network
outputs both the joint position and rotation data, we visualize the resulting motion by using only
the joint position data. The supplemental video shows the resulting motions from the experiments.

7.1 Visual Results
Transferring to multiple domains. To examine the ability of our framework to transfer styles to

multiple domains, we use the fast walking motion from the neutral domain as the source motion and
perform style transfer using reference motions in various style domains, such as depressed-normal
walking, childlike-running, old-jumping, and strutting-kicking. As shown in Figure 4, the results
demonstrate that our framework can translate the distinctive style of the reference motion in each
style domain into the source motion, without affecting its key content information, such as the
locomotion phase and foot contact timing.

Stylization diversity using random noise. A distinctive feature of our method is that it can generate
the desired style code from a randomly sampled latent vector without using any reference motions.
Figure 1 shows the diverse results of transferring neutral motion to proud and depressed domains
with three different latent codes. The results show that the latent code allows for detailed stylistic
control, which is applicable to multiple domains and contents. In fast walking motion, we find
that the range of arm swing, step length, and torso tilting vary in response to the latent code. In
jumping motion, on the other hand, the latent code mostly affects the shape of the arms and legs
and the jumping height. Notably, an emerged phenomenon is that the same latent code tends to
show similar style intensity across domains. For example, z3 and z2 in Figure 1 create the highest
and lowest stylization intensities, respectively, in both motion contents and both style domains.

Style transfer on long-term heterogeneous data. We test whether our method can stylize a long-
term heterogeneous motion. Specifically, we apply our framework trained with M𝐴 dataset to the
heterogeneous dataset M𝐵 . Figure 5 shows the style transfer results of a neutral motion over 1000
frames, including walking → jumping → transition → left kicking → right kicking to strutting and
old domains using a random style code. We find that our style transfer method can be applied to a
long sequential motion with multiple contents.
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Target: oldTarget: strutting

Fig. 5. Style transfer of a heterogeneous neutral motion including walking→ jumping→ transition→ left
kicking → right kicking to strutting and old domains.

𝛼 = 0.2 𝛼 = 0.4 𝛼 = 0.6 𝛼 = 0.8𝛼 = 0.0 𝛼 = 1.0

(a) Within-domain interpolation

𝛼 = 0.2 𝛼 = 0.4 𝛼 = 0.6 𝛼 = 0.8𝛼 = 0.0 𝛼 = 1.0

(b) Inter-domain interpolation

Fig. 6. Style interpolation results. Running motion is stylized with interpolated style codes (a) within childlike
domain and (b) between childlike and old domains.

Style interpolation. Our framework allows for the style mixing within-domain and inter-domain
by linearly interpolating different style codes. Figure 6a shows running motion is stylized with
interpolated style codes within childlike domain. Figure 6b shows the same motion is transferred
with interpolated style codes between childlike and old domains.

7.2 Ablation Analysis
We conduct an ablation study to analyze the influence of our loss terms. We first experiment by
using only the adversarial (L𝑎𝑑𝑣) and content reconstruction losses (L𝑐𝑦𝑐 ,L𝑖𝑑 ), gradually adding
losses for style reconstruction (L𝑠𝑡𝑦) and style diversification (L𝑑𝑠 ). We measure FMD and the
recognition accuracy on the stylized samples that are generated from random noise for each loss
combination. As shown in Table 1, adding L𝑠𝑡𝑦 increases the performance by a large margin.
However, the FMD and recognition accuracy are slightly degraded when L𝑑𝑠 is added since L𝑑𝑠

encourages the model to generate different motion from each other, leading to the stylized set being
largely diversified from the original training setM𝑔𝑒𝑛 . However, the model can generate diverse but
reliable stylization results through L𝑑𝑠 . Figure 7 shows the stylization results on running motion
into childlike domain with two randomly sampled latent codes trained with and without L𝑑𝑠 term.
Figure 7a shows distinctive results with two latent codes whereas Figure 7b exhibits the mode
collapsing problem, resulting in almost the same motions. Once the model is trained with L𝑑𝑠 , we
can expect that the random noise will control the stylistic variation within a given target domain.
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Table 1. Ablation analysis on loss terms

Loss function FMD↓ Accuracy↑ (%)
L𝑎𝑑𝑣 + L𝑐𝑦𝑐 + L𝑖𝑑 14.14 57.92

L𝑎𝑑𝑣 + L𝑐𝑦𝑐 + L𝑖𝑑 + L𝑠𝑡𝑦 8.58 77.86
L𝑎𝑑𝑣 + L𝑐𝑦𝑐 + L𝑖𝑑 + L𝑠𝑡𝑦 + L𝑑𝑠 9.09 72.64

(a) Two stylized transfer results using
random noises when trained withL𝑑𝑠 .

(b) Two stylized transfer results using
random noises when trained without
L𝑑𝑠 .

Fig. 7. Effectiveness of the diversity term L𝑑𝑠 . A running motion is stylized into childlike with two randomly
sampled noises. (a) When trained with L𝑑𝑠 term, distinctive results are obtained with different latent codes.
(b) Without the term, mode collapsing phenomena may occur.

7.3 Comparison
Qualitative evaluation. We compare the performance of our method in terms of the generation

quality and content preservation to the previous methods: [Aberman et al. 2020] using AdaIN and
[Holden et al. 2016] using Gram matrix for style transfer. Both methods are different from ours in
that they use the 1D convolution over the time domain for feature extraction; therefore, they do
not explicitly model the spatial relations among body parts in the motion data.
Figure 8 shows the qualitative comparison of three methods. Previous methods struggle to

reliably perform style transfer while preserving the content of source motion, especially when two
input motions are non-periodic and spatially irrelevant to each other, such as neutral-punching
and angry-kicking. In particular, the method of [Holden et al. 2016] fails to separate the content of
reference motion, resulting in the lifted leg of angry-kicking and the elevated arm of sexy-punching
being translated into stylized motions. On the other hand, our method can reflect the domain-
specific styles without harming the semantics of source motion and does not exhibit artifacts such
as motion twist or foot floating observed in the results of [Aberman et al. 2020]. This comparison
suggests that our approach is more effective at disentangling style and content, therefore providing
a higher degree of visual quality and content preservation than the previous method. We attribute
this ability of our model to the spatial-temporal motion modeling. We include the full comparison
in the supplementary video.

Quantitative evaluation. We quantitatively measure the degree of the generation quality and
content preservation of three generative models: [Holden et al. 2016], [Aberman et al. 2020], and
our network. We calculate the FMD and recognition accuracy on the stylized set with all possible
combinations of source (content) and reference (style) motions created with each model.
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Source Reference Ours [Aberman et al. 2020]

Neutral – punching Angry – kicking

Neutral – jumping Sexy – punching

Neutral – normal walking Strutting – kicking

+ = [Holden et al. 2016]

Fig. 8. Comparison between our method, [Aberman et al. 2020], and [Holden et al. 2016].

Table 2. Quantitative evaluation

Methods Motion modeling FMD↓ Accuracy↑ (%)
Ours ST-GCN 6.82±0.86 60.86±2.06

[Aberman et al. 2020] 1D CNN 15.86±2.51 42.81±2.53
[Holden et al. 2016] 1D CNN 14.10±0.65 37.99±1.45

Results are presented in Table 2. Our model shows superior results to the competing methods in
both metrics, suggesting that our method produces higher-quality stylized motions and preserves
the motion content more accurately.

8 DISCUSSION
There are a few possible factors that may have contributed to the performance of our framework.
Previous works attempted to extract the style along the time axis, which often fails to reflect the
spatial dynamics of motion that may be associated with the style. In our study, on the other hand,
spatial-temporal modeling of motion is accomplished by graph convolutional operations, allowing
more structural and hierarchical features of skeleton data to be extracted from the local to global
scale and vice versa via graph pooling and unpooling, whereas 1D CNN does not take into account
the correlation between joints.

Moreover, our style encoder and mapping network produce the style code separately so that our
generator can solely focus on utilizing the given style code when generating a motion. Lastly, as
stated in [Choi et al. 2020], the shared parts of our style encoder and discriminator learn domain-
invariant features, which induce the regularization effect so that the model can better generalize
over unseen samples.

Our framework has several limitations that need to be addressed in future work. First, the linear
and angular velocities of the root are not used in the input or output of the network. Instead, the
root trajectory in the generated motion is calculated directly from the source motion. Therefore,
applying a high-intensity style to a walking motion through random noise, causing a drastic change
of the step length, may result in foot skating artifacts. A promising approach to improving the
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motion quality would be to disentangle the spaces of the joint pose and velocity to separately
stylize the two spaces, as proposed by [Lim et al. 2019].

Second, our framework is only applicable to the motions with explicit style labels. This limitation
reduces the range of motion data available because most motion databases do not come with style
labels. In addition, many styles are difficult to label with only a few words. An important future
work to overcome this limitation is to develop a network capable of fully unsupervised learning to
learn style space from the motion data in the wild.

9 CONCLUSION
In this paper, we have proposed a deep learning-based framework for character motion style
transfer. Our framework is a generative architecture that learns mappings across multiple style
domains and generates a variety of stylized outputs. We construct a spatio-temporal graph on a
motion sequence and apply spatial-temporal graph convolutional operations to the graph-based
data. Through experiments, we showed that our framework can perform reliable style transfer
between motions with arbitrary contents while ensuring a high degree of visual quality, stylistic
diversity, and content preservation.
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A APPENDIX: IMPLEMENTATION
In this section, we provide details about implementing our framework.

A.1 Architectural Details
Table 3 shows the details of our network architecture. Here, the size of spatial-temporal graph
convolution filter is denoted as 𝑘𝑡 × 𝑘𝑠 , where 𝑘𝑡 and 𝑘𝑠 are the kernel sizes along the temporal and
spatial dimensions, respectively.

Our motion stylizer 𝐺 has two ST-GCN residual blocks with IN layers (ST-Resblk) for 𝐺𝑒𝑛𝑐 and
two ST-GCN residual blocks with AdaIN layers (ST-AdaINResblk) for 𝐺𝑑𝑒𝑐 . The leaky ReLU is used
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as the activation function. 𝐺𝑒𝑛𝑐 takes a source motion m as input and downsample it via graph
pooling to produce the feature map represented by the graph G3 with |V3 | = 𝑁 /4 × 𝑇 /4. 𝐺𝑑𝑒𝑐

receives the output of 𝐺𝑒𝑛𝑐 with a style code and upsamples the motion data via graph unpooling,
while injecting the style code in all AdaIN layers in ST-AdaINResblk.

The style encoder 𝐸 consists of two ST-Resblks followed by D linear output branches, where D is
the number of style domains. Given a reference motion m, 𝐸 encodes the style code from m via
graph pooling. Here, the size of the style code is set to 64, and thus the output dimension in Table 3b
becomes 64 × D, which represents the dimension of the created style codes for all D domains.
Our mapping network 𝐹 consists of four fully connected layers. 𝐹 creates a style code using a

latent code and a target domain label as inputs. The one-hot encoded domain label and the latent
vector are concatenated after passing through FC1a and FC1b, respectively. Here, the dimensionality
of the hidden layer (the output of FC3) is set to 1024.

Similarly to 𝐸, the discriminator𝐷 consists of two ST-Resblks with D output branches.𝐷 downsam-
ples the input motion via graph pooling and outputs a binary value depending on its classification
between real and fake. The output dimension in Table 3d is set to D, which indicates the dimension
of the classifications for all domains.

A.2 Implementation Details
Our framework is implemented in Pytorch and optimized by the Adam optimizer [Kingma and
Ba 2015] with 𝛽1 = 0.99 and 𝛽2 = 0.999. We train our model for 100K iterations with a batch size
of 8. Style Encoder 𝐸 and Mapping Network 𝐹 are used alternately during training. The learning
rates were set to 10−4 for 𝐺 , 10−6 for 𝐷, 𝐸, and 10−4 for 𝐹 . We set 𝜆𝑎𝑑𝑣, 𝜆𝑐𝑦𝑐 , 𝜆𝑖𝑑 , 𝜆𝑠𝑡𝑦 , and 𝜆𝑑𝑠 = 1.
We initialize the weights of network modules using He initialization. The whole training session
takes 10 hours for M𝐴 using a single NVIDIA GTX Titan XP GPU.
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Type Filter size Actv. Norm. Resample Output shape
m - - - - 𝑇 × 𝑁 × 7

Conv1x1 1 × 1 - - - 𝑇 × 𝑁 × 64
ST-Resblk 3 × 3 LReLU IN Graph pool 𝑇 /2 × 𝑁 /2 × 128
ST-Resblk 3 × 3 LReLU IN Graph pool 𝑇 /4 × 𝑁 /4 × 256

ST-AdaINResblk 3 × 3 LReLU AdaIN Graph unpool 𝑇 /2 × 𝑁 /2 × 128
ST-AdaINResblk 3 × 3 LReLU AdaIN Graph unpool 𝑇 × 𝑁 × 64

Conv1x1 1 × 1 - - - 𝑇 × 𝑁 × 7

(a) Motion stylizer 𝐺 .

Type Filter size Actv. Resample Output shape
m - - - 𝑇 × 𝑁 × 7

Conv1x1 1 × 1 - - 𝑇 × 𝑁 × 64
ST-Resblk 3 × 3 LReLU Graph pool 𝑇 /2 × 𝑁 /2 × 128
ST-Resblk 3 × 3 LReLU Graph pool 𝑇 /4 × 𝑁 /4 × 256

LReLU - - - 𝑇 /4 × 𝑁 /4 × 256
Conv2D 𝑇 /4 × 𝑁 /4 - - 1 × 1 × 256
LReLU - - - 1 × 1 × 256

Reshape - - - 256
FC 64 - - 64 × D

(b) Style Encoder 𝐸.

Type Actv. Output shape
z, 𝑦 - 16, D

FC1a ReLU 256
FC1b ReLU 256
Concat - 512

FC2 ReLU 512
FC3 ReLU 1024
FC4 ReLU 64
Tanh - 64

(c) Mapping network 𝐹 .

Type Filter size Act. Resample Output shape
m or m̂ - - - 𝑇 × 𝑁 × 7

Conv1x1 1 × 1 - - 𝑇 × 𝑁 × 64
ST-Resblk 3 × 3 LReLU Graph pool 𝑇 /2 × 𝑁 /2 × 128
ST-Resblk 3 × 3 LReLU Graph pool 𝑇 /4 × 𝑁 /4 × 256

LReLU - - - 𝑇 /4 × 𝑁 /4 × 256
Conv2D 𝑇 /4 × 𝑁 /4 - - 1 × 1 × 256
LReLU - - - 1 × 1 × 256
Conv1x1 1 × 1 - - 1 × 1 × D

Reshape - - - D
FC D - - D

(d) Discriminator 𝐷 .

Table 3. Architecture of our motion style transfer framework.
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